Proof of Theorem paddasslem9
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝐾 ∈ HL) |
| 2 | | simpl2 1193 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) |
| 3 | | simpl3l 1229 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑝 ∈ 𝐴) |
| 4 | | simpr31 1264 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑠 ∈ 𝐴) |
| 5 | 3, 4 | jca 511 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) |
| 6 | | simpr1 1195 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) |
| 7 | | simpr32 1265 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑠 ≤ (𝑥 ∨ 𝑦)) |
| 8 | | simpl3r 1230 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑟 ∈ 𝐴) |
| 9 | 3, 8, 4 | 3jca 1129 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) |
| 10 | | an6 1447 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋) ∧ (𝑌 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑌) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑍))) |
| 11 | | ssel2 3978 |
. . . . . . 7
⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝐴) |
| 12 | | ssel2 3978 |
. . . . . . 7
⊢ ((𝑌 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝐴) |
| 13 | | ssel2 3978 |
. . . . . . 7
⊢ ((𝑍 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝐴) |
| 14 | 11, 12, 13 | 3anim123i 1152 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋) ∧ (𝑌 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑌) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑍)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
| 15 | 10, 14 | sylbi 217 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
| 16 | 15 | 3ad2antl2 1187 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
| 17 | 16 | 3ad2antr1 1189 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
| 18 | | simpr2l 1233 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → ¬ 𝑟 ≤ (𝑥 ∨ 𝑦)) |
| 19 | | simpr2r 1234 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑟 ≤ (𝑦 ∨ 𝑧)) |
| 20 | 18, 19, 7 | 3jca 1129 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦))) |
| 21 | | simpr33 1266 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑠 ≤ (𝑝 ∨ 𝑧)) |
| 22 | | paddasslem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 23 | | paddasslem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 24 | | paddasslem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 25 | 22, 23, 24 | paddasslem7 39828 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦)) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
| 26 | 1, 9, 17, 20, 21, 25 | syl32anc 1380 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
| 27 | | paddasslem.p |
. . 3
⊢ + =
(+𝑃‘𝐾) |
| 28 | 22, 23, 24, 27 | paddasslem8 39829 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑠 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
| 29 | 1, 2, 5, 6, 7, 26,
28 | syl33anc 1387 |
1
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |