Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem9 Structured version   Visualization version   GIF version

Theorem paddasslem9 39822
Description: Lemma for paddass 39832. Combine paddasslem7 39820 and paddasslem8 39821. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem9
StepHypRef Expression
1 simpl1 1192 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝐾 ∈ HL)
2 simpl2 1193 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → (𝑋𝐴𝑌𝐴𝑍𝐴))
3 simpl3l 1229 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑝𝐴)
4 simpr31 1264 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑠𝐴)
53, 4jca 511 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → (𝑝𝐴𝑠𝐴))
6 simpr1 1195 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → (𝑥𝑋𝑦𝑌𝑧𝑍))
7 simpr32 1265 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑠 (𝑥 𝑦))
8 simpl3r 1230 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑟𝐴)
93, 8, 43jca 1128 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → (𝑝𝐴𝑟𝐴𝑠𝐴))
10 an6 1447 . . . . . 6 (((𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) ↔ ((𝑋𝐴𝑥𝑋) ∧ (𝑌𝐴𝑦𝑌) ∧ (𝑍𝐴𝑧𝑍)))
11 ssel2 3941 . . . . . . 7 ((𝑋𝐴𝑥𝑋) → 𝑥𝐴)
12 ssel2 3941 . . . . . . 7 ((𝑌𝐴𝑦𝑌) → 𝑦𝐴)
13 ssel2 3941 . . . . . . 7 ((𝑍𝐴𝑧𝑍) → 𝑧𝐴)
1411, 12, 133anim123i 1151 . . . . . 6 (((𝑋𝐴𝑥𝑋) ∧ (𝑌𝐴𝑦𝑌) ∧ (𝑍𝐴𝑧𝑍)) → (𝑥𝐴𝑦𝐴𝑧𝐴))
1510, 14sylbi 217 . . . . 5 (((𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑥𝐴𝑦𝐴𝑧𝐴))
16153ad2antl2 1187 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑥𝐴𝑦𝐴𝑧𝐴))
17163ad2antr1 1189 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → (𝑥𝐴𝑦𝐴𝑧𝐴))
18 simpr2l 1233 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → ¬ 𝑟 (𝑥 𝑦))
19 simpr2r 1234 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑟 (𝑦 𝑧))
2018, 19, 73jca 1128 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)))
21 simpr33 1266 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑠 (𝑝 𝑧))
22 paddasslem.l . . . 4 = (le‘𝐾)
23 paddasslem.j . . . 4 = (join‘𝐾)
24 paddasslem.a . . . 4 𝐴 = (Atoms‘𝐾)
2522, 23, 24paddasslem7 39820 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))
261, 9, 17, 20, 21, 25syl32anc 1380 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑝 (𝑠 𝑧))
27 paddasslem.p . . 3 + = (+𝑃𝐾)
2822, 23, 24, 27paddasslem8 39821 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
291, 2, 5, 6, 7, 26, 28syl33anc 1387 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧)) ∧ (𝑠𝐴𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  HLchlt 39343  +𝑃cpadd 39789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-padd 39790
This theorem is referenced by:  paddasslem10  39823
  Copyright terms: Public domain W3C validator