Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gboge9 Structured version   Visualization version   GIF version

Theorem gboge9 45216
Description: Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 45226, this bound is strict. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gboge9 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)

Proof of Theorem gboge9
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbo 45205 . 2 (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))))
2 df-3an 1088 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
3 an6 1444 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) ↔ ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )))
4 oddprmuzge3 45168 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
5 oddprmuzge3 45168 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
6 oddprmuzge3 45168 . . . . . . . . . . 11 ((𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd ) → 𝑟 ∈ (ℤ‘3))
7 6p3e9 12133 . . . . . . . . . . . 12 (6 + 3) = 9
8 eluzelz 12592 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℤ)
9 eluzelz 12592 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℤ)
10 zaddcl 12360 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
118, 9, 10syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℤ)
1211zred 12426 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℝ)
13 eluzelre 12593 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (ℤ‘3) → 𝑟 ∈ ℝ)
1412, 13anim12i 613 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
15143impa 1109 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
16 6re 12063 . . . . . . . . . . . . . . 15 6 ∈ ℝ
17 3re 12053 . . . . . . . . . . . . . . 15 3 ∈ ℝ
1816, 17pm3.2i 471 . . . . . . . . . . . . . 14 (6 ∈ ℝ ∧ 3 ∈ ℝ)
1915, 18jctil 520 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
20 3p3e6 12125 . . . . . . . . . . . . . . . 16 (3 + 3) = 6
21 eluzelre 12593 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℝ)
22 eluzelre 12593 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℝ)
2321, 22anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
2417, 17pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ ∧ 3 ∈ ℝ)
2523, 24jctil 520 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → ((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
26 eluzle 12595 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 3 ≤ 𝑝)
27 eluzle 12595 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 3 ≤ 𝑞)
2826, 27anim12i 613 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 ≤ 𝑝 ∧ 3 ≤ 𝑞))
29 le2add 11457 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
3025, 28, 29sylc 65 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 + 3) ≤ (𝑝 + 𝑞))
3120, 30eqbrtrrid 5110 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
32313adant3 1131 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
33 eluzle 12595 . . . . . . . . . . . . . . 15 (𝑟 ∈ (ℤ‘3) → 3 ≤ 𝑟)
34333ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 3 ≤ 𝑟)
3532, 34jca 512 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟))
36 le2add 11457 . . . . . . . . . . . . 13 (((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟)))
3719, 35, 36sylc 65 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟))
387, 37eqbrtrrid 5110 . . . . . . . . . . 11 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
394, 5, 6, 38syl3an 1159 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
403, 39sylbi 216 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
412, 40sylanbr 582 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
42 breq2 5078 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (9 ≤ 𝑍 ↔ 9 ≤ ((𝑝 + 𝑞) + 𝑟)))
4341, 42syl5ibrcom 246 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 9 ≤ 𝑍))
4443expimpd 454 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4544rexlimdva 3213 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4645a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍)))
4746rexlimdvv 3222 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4847imp 407 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) → 9 ≤ 𝑍)
491, 48sylbi 216 1 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870   + caddc 10874  cle 11010  3c3 12029  6c6 12032  9c9 12035  cz 12319  cuz 12582  cprime 16376   Odd codd 45077   GoldbachOdd cgbo 45199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377  df-even 45078  df-odd 45079  df-gbo 45202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator