Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gboge9 Structured version   Visualization version   GIF version

Theorem gboge9 46432
Description: Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 46442, this bound is strict. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gboge9 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)

Proof of Theorem gboge9
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbo 46421 . 2 (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))))
2 df-3an 1090 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
3 an6 1446 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) ↔ ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )))
4 oddprmuzge3 46384 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
5 oddprmuzge3 46384 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
6 oddprmuzge3 46384 . . . . . . . . . . 11 ((𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd ) → 𝑟 ∈ (ℤ‘3))
7 6p3e9 12372 . . . . . . . . . . . 12 (6 + 3) = 9
8 eluzelz 12832 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℤ)
9 eluzelz 12832 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℤ)
10 zaddcl 12602 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
118, 9, 10syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℤ)
1211zred 12666 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℝ)
13 eluzelre 12833 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (ℤ‘3) → 𝑟 ∈ ℝ)
1412, 13anim12i 614 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
15143impa 1111 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
16 6re 12302 . . . . . . . . . . . . . . 15 6 ∈ ℝ
17 3re 12292 . . . . . . . . . . . . . . 15 3 ∈ ℝ
1816, 17pm3.2i 472 . . . . . . . . . . . . . 14 (6 ∈ ℝ ∧ 3 ∈ ℝ)
1915, 18jctil 521 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
20 3p3e6 12364 . . . . . . . . . . . . . . . 16 (3 + 3) = 6
21 eluzelre 12833 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℝ)
22 eluzelre 12833 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℝ)
2321, 22anim12i 614 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
2417, 17pm3.2i 472 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ ∧ 3 ∈ ℝ)
2523, 24jctil 521 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → ((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
26 eluzle 12835 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 3 ≤ 𝑝)
27 eluzle 12835 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 3 ≤ 𝑞)
2826, 27anim12i 614 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 ≤ 𝑝 ∧ 3 ≤ 𝑞))
29 le2add 11696 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
3025, 28, 29sylc 65 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 + 3) ≤ (𝑝 + 𝑞))
3120, 30eqbrtrrid 5185 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
32313adant3 1133 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
33 eluzle 12835 . . . . . . . . . . . . . . 15 (𝑟 ∈ (ℤ‘3) → 3 ≤ 𝑟)
34333ad2ant3 1136 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 3 ≤ 𝑟)
3532, 34jca 513 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟))
36 le2add 11696 . . . . . . . . . . . . 13 (((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟)))
3719, 35, 36sylc 65 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟))
387, 37eqbrtrrid 5185 . . . . . . . . . . 11 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
394, 5, 6, 38syl3an 1161 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
403, 39sylbi 216 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
412, 40sylanbr 583 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
42 breq2 5153 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (9 ≤ 𝑍 ↔ 9 ≤ ((𝑝 + 𝑞) + 𝑟)))
4341, 42syl5ibrcom 246 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 9 ≤ 𝑍))
4443expimpd 455 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4544rexlimdva 3156 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4645a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍)))
4746rexlimdvv 3211 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4847imp 408 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) → 9 ≤ 𝑍)
491, 48sylbi 216 1 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071   class class class wbr 5149  cfv 6544  (class class class)co 7409  cr 11109   + caddc 11113  cle 11249  3c3 12268  6c6 12271  9c9 12274  cz 12558  cuz 12822  cprime 16608   Odd codd 46293   GoldbachOdd cgbo 46415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-prm 16609  df-even 46294  df-odd 46295  df-gbo 46418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator