Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gboge9 Structured version   Visualization version   GIF version

Theorem gboge9 43923
Description: Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 43933, this bound is strict. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gboge9 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)

Proof of Theorem gboge9
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbo 43912 . 2 (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))))
2 df-3an 1085 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
3 an6 1441 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) ↔ ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )))
4 oddprmuzge3 43875 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
5 oddprmuzge3 43875 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
6 oddprmuzge3 43875 . . . . . . . . . . 11 ((𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd ) → 𝑟 ∈ (ℤ‘3))
7 6p3e9 11791 . . . . . . . . . . . 12 (6 + 3) = 9
8 eluzelz 12247 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℤ)
9 eluzelz 12247 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℤ)
10 zaddcl 12016 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
118, 9, 10syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℤ)
1211zred 12081 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℝ)
13 eluzelre 12248 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (ℤ‘3) → 𝑟 ∈ ℝ)
1412, 13anim12i 614 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
15143impa 1106 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
16 6re 11721 . . . . . . . . . . . . . . 15 6 ∈ ℝ
17 3re 11711 . . . . . . . . . . . . . . 15 3 ∈ ℝ
1816, 17pm3.2i 473 . . . . . . . . . . . . . 14 (6 ∈ ℝ ∧ 3 ∈ ℝ)
1915, 18jctil 522 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
20 3p3e6 11783 . . . . . . . . . . . . . . . 16 (3 + 3) = 6
21 eluzelre 12248 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℝ)
22 eluzelre 12248 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℝ)
2321, 22anim12i 614 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
2417, 17pm3.2i 473 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ ∧ 3 ∈ ℝ)
2523, 24jctil 522 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → ((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
26 eluzle 12250 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 3 ≤ 𝑝)
27 eluzle 12250 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 3 ≤ 𝑞)
2826, 27anim12i 614 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 ≤ 𝑝 ∧ 3 ≤ 𝑞))
29 le2add 11116 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
3025, 28, 29sylc 65 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 + 3) ≤ (𝑝 + 𝑞))
3120, 30eqbrtrrid 5094 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
32313adant3 1128 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
33 eluzle 12250 . . . . . . . . . . . . . . 15 (𝑟 ∈ (ℤ‘3) → 3 ≤ 𝑟)
34333ad2ant3 1131 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 3 ≤ 𝑟)
3532, 34jca 514 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟))
36 le2add 11116 . . . . . . . . . . . . 13 (((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟)))
3719, 35, 36sylc 65 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟))
387, 37eqbrtrrid 5094 . . . . . . . . . . 11 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
394, 5, 6, 38syl3an 1156 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
403, 39sylbi 219 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
412, 40sylanbr 584 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
42 breq2 5062 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (9 ≤ 𝑍 ↔ 9 ≤ ((𝑝 + 𝑞) + 𝑟)))
4341, 42syl5ibrcom 249 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 9 ≤ 𝑍))
4443expimpd 456 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4544rexlimdva 3284 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4645a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍)))
4746rexlimdvv 3293 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4847imp 409 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) → 9 ≤ 𝑍)
491, 48sylbi 219 1 (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  cr 10530   + caddc 10534  cle 10670  3c3 11687  6c6 11690  9c9 11693  cz 11975  cuz 12237  cprime 16009   Odd codd 43784   GoldbachOdd cgbo 43906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-prm 16010  df-even 43785  df-odd 43786  df-gbo 43909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator