MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolgelb Structured version   Visualization version   GIF version

Theorem ovolgelb 24549
Description: The outer volume is the greatest lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
ovolgelb.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
Assertion
Ref Expression
ovolgelb ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hint:   𝑆(𝑔)

Proof of Theorem ovolgelb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
2 simp3 1136 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
31, 2ltaddrpd 12734 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) < ((vol*‘𝐴) + 𝐵))
42rpred 12701 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
51, 4readdcld 10935 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ)
61, 5ltnled 11052 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴)))
73, 6mpbid 231 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴))
8 eqid 2738 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}
98ovolval 24542 . . . . . . 7 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1093ad2ant1 1131 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1110breq2d 5082 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
12 ssrab2 4009 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ*
135rexrd 10956 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ*)
14 infxrgelb 12998 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
1512, 13, 14sylancr 586 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
16 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )))
17 ovolgelb.1 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
1817rneqi 5835 . . . . . . . . . . . . 13 ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑔))
1918supeq1i 9136 . . . . . . . . . . . 12 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )
2019eqeq2i 2751 . . . . . . . . . . 11 (𝑥 = sup(ran 𝑆, ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))
2116, 20bitr4di 288 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran 𝑆, ℝ*, < )))
2221anbi2d 628 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2322rexbidv 3225 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2423ralrab 3623 . . . . . . 7 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
25 ralcom 3280 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
26 r19.23v 3207 . . . . . . . . 9 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
2726ralbii 3090 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
28 ancomst 464 . . . . . . . . . . . 12 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
29 impexp 450 . . . . . . . . . . . 12 (((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3028, 29bitri 274 . . . . . . . . . . 11 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3130ralbii 3090 . . . . . . . . . 10 (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
32 elovolmlem 24543 . . . . . . . . . . . . . . 15 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 eqid 2738 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔)
3433, 17ovolsf 24541 . . . . . . . . . . . . . . 15 (𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
3532, 34sylbi 216 . . . . . . . . . . . . . 14 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑆:ℕ⟶(0[,)+∞))
3635frnd 6592 . . . . . . . . . . . . 13 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ran 𝑆 ⊆ (0[,)+∞))
37 icossxr 13093 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ*
3836, 37sstrdi 3929 . . . . . . . . . . . 12 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ran 𝑆 ⊆ ℝ*)
39 supxrcl 12978 . . . . . . . . . . . 12 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . 11 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
41 breq2 5074 . . . . . . . . . . . . 13 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4241imbi2d 340 . . . . . . . . . . . 12 (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4342ceqsralv 3459 . . . . . . . . . . 11 (sup(ran 𝑆, ℝ*, < ) ∈ ℝ* → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4440, 43syl 17 . . . . . . . . . 10 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4531, 44syl5bb 282 . . . . . . . . 9 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4645ralbiia 3089 . . . . . . . 8 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4725, 27, 463bitr3i 300 . . . . . . 7 (∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4824, 47bitri 274 . . . . . 6 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4915, 48bitr2di 287 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
5011, 49bitr4d 281 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
517, 50mtbid 323 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
52 rexanali 3191 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5351, 52sylibr 233 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
54 xrltnle 10973 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
55 xrltle 12812 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5654, 55sylbird 259 . . . . 5 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5740, 13, 56syl2anr 596 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5857anim2d 611 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
5958reximdva 3202 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
6053, 59mpd 15 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883   cuni 4836   class class class wbr 5070   × cxp 5578  ran crn 5581  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  supcsup 9129  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  +crp 12659  (,)cioo 13008  [,)cico 13010  seqcseq 13649  abscabs 14873  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-ovol 24533
This theorem is referenced by:  ovolunlem2  24567  ovoliunlem3  24573  ovolscalem2  24583  ioombl1  24631  uniioombl  24658  mblfinlem3  35743  mblfinlem4  35744
  Copyright terms: Public domain W3C validator