Step | Hyp | Ref
| Expression |
1 | | simp2 1136 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (vol*‘𝐴) ∈ ℝ) |
2 | | simp3 1137 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → 𝐵 ∈
ℝ+) |
3 | 1, 2 | ltaddrpd 12805 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (vol*‘𝐴) < ((vol*‘𝐴) + 𝐵)) |
4 | 2 | rpred 12772 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → 𝐵 ∈ ℝ) |
5 | 1, 4 | readdcld 11004 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ) |
6 | 1, 5 | ltnled 11122 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ((vol*‘𝐴) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴))) |
7 | 3, 6 | mpbid 231 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴)) |
8 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))} = {𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, <
))} |
9 | 8 | ovolval 24637 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) = inf({𝑦 ∈ ℝ*
∣ ∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))}, ℝ*, < )) |
10 | 9 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))},
ℝ*, < )) |
11 | 10 | breq2d 5086 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))},
ℝ*, < ))) |
12 | | ssrab2 4013 |
. . . . . . 7
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))} ⊆ ℝ* |
13 | 5 | rexrd 11025 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ((vol*‘𝐴) + 𝐵) ∈
ℝ*) |
14 | | infxrgelb 13069 |
. . . . . . 7
⊢ (({𝑦 ∈ ℝ*
∣ ∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))} ⊆ ℝ* ∧
((vol*‘𝐴) + 𝐵) ∈ ℝ*)
→ (((vol*‘𝐴) +
𝐵) ≤ inf({𝑦 ∈ ℝ*
∣ ∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))}
((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
15 | 12, 13, 14 | sylancr 587 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))},
ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))}
((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
16 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))) |
17 | | ovolgelb.1 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝑔)) |
18 | 17 | rneqi 5846 |
. . . . . . . . . . . . 13
⊢ ran 𝑆 = ran seq1( + , ((abs ∘
− ) ∘ 𝑔)) |
19 | 18 | supeq1i 9206 |
. . . . . . . . . . . 12
⊢ sup(ran
𝑆, ℝ*,
< ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, <
) |
20 | 19 | eqeq2i 2751 |
. . . . . . . . . . 11
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, <
)) |
21 | 16, 20 | bitr4di 289 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ↔ 𝑥 = sup(ran 𝑆, ℝ*, <
))) |
22 | 21 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < )) ↔
(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, <
)))) |
23 | 22 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < )) ↔
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, <
)))) |
24 | 23 | ralrab 3630 |
. . . . . . 7
⊢
(∀𝑥 ∈
{𝑦 ∈
ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))}
((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
25 | | ralcom 3166 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ* ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
26 | | r19.23v 3208 |
. . . . . . . . 9
⊢
(∀𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
27 | 26 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ* ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
28 | | ancomst 465 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) |
29 | | impexp 451 |
. . . . . . . . . . . 12
⊢ (((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))) |
30 | 28, 29 | bitri 274 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))) |
31 | 30 | ralbii 3092 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℝ* ((𝐴
⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))) |
32 | | elovolmlem 24638 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((abs
∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔) |
34 | 33, 17 | ovolsf 24636 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
35 | 32, 34 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑆:ℕ⟶(0[,)+∞)) |
36 | 35 | frnd 6608 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ran 𝑆 ⊆ (0[,)+∞)) |
37 | | icossxr 13164 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ* |
38 | 36, 37 | sstrdi 3933 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ran 𝑆 ⊆
ℝ*) |
39 | | supxrcl 13049 |
. . . . . . . . . . . 12
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
41 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) →
(((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
42 | 41 | imbi2d 341 |
. . . . . . . . . . . 12
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
)))) |
43 | 42 | ceqsralv 3469 |
. . . . . . . . . . 11
⊢ (sup(ran
𝑆, ℝ*,
< ) ∈ ℝ* → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
)))) |
44 | 40, 43 | syl 17 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ*
(𝑥 = sup(ran 𝑆, ℝ*, < )
→ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
)))) |
45 | 31, 44 | bitrid 282 |
. . . . . . . . 9
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ*
((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
)))) |
46 | 45 | ralbiia 3091 |
. . . . . . . 8
⊢
(∀𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ*
((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
47 | 25, 27, 46 | 3bitr3i 301 |
. . . . . . 7
⊢
(∀𝑥 ∈
ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) →
((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
48 | 24, 47 | bitri 274 |
. . . . . 6
⊢
(∀𝑥 ∈
{𝑦 ∈
ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))}
((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
49 | 15, 48 | bitr2di 288 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔
((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < ))},
ℝ*, < ))) |
50 | 11, 49 | bitr4d 281 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
)))) |
51 | 7, 50 | mtbid 324 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
52 | | rexanali 3192 |
. . 3
⊢
(∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ¬
∀𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
53 | 51, 52 | sylibr 233 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ ¬
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
54 | | xrltnle 11042 |
. . . . . 6
⊢ ((sup(ran
𝑆, ℝ*,
< ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) →
(sup(ran 𝑆,
ℝ*, < ) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, <
))) |
55 | | xrltle 12883 |
. . . . . 6
⊢ ((sup(ran
𝑆, ℝ*,
< ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) →
(sup(ran 𝑆,
ℝ*, < ) < ((vol*‘𝐴) + 𝐵) → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + 𝐵))) |
56 | 54, 55 | sylbird 259 |
. . . . 5
⊢ ((sup(ran
𝑆, ℝ*,
< ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (¬
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran
𝑆, ℝ*,
< ) ≤ ((vol*‘𝐴)
+ 𝐵))) |
57 | 40, 13, 56 | syl2anr 597 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran
𝑆, ℝ*,
< ) ≤ ((vol*‘𝐴)
+ 𝐵))) |
58 | 57 | anim2d 612 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ ¬
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + 𝐵)))) |
59 | 58 | reximdva 3203 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ ¬
((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) →
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran 𝑆,
ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))) |
60 | 53, 59 | mpd 15 |
1
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran 𝑆,
ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))) |