MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolgelb Structured version   Visualization version   GIF version

Theorem ovolgelb 25534
Description: The outer volume is the greatest lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
ovolgelb.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
Assertion
Ref Expression
ovolgelb ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hint:   𝑆(𝑔)

Proof of Theorem ovolgelb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
2 simp3 1138 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
31, 2ltaddrpd 13132 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) < ((vol*‘𝐴) + 𝐵))
42rpred 13099 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
51, 4readdcld 11319 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ)
61, 5ltnled 11437 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴)))
73, 6mpbid 232 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴))
8 eqid 2740 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}
98ovolval 25527 . . . . . . 7 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1093ad2ant1 1133 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ))
1110breq2d 5178 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
12 ssrab2 4103 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ*
135rexrd 11340 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((vol*‘𝐴) + 𝐵) ∈ ℝ*)
14 infxrgelb 13397 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
1512, 13, 14sylancr 586 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
16 eqeq1 2744 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )))
17 ovolgelb.1 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔))
1817rneqi 5962 . . . . . . . . . . . . 13 ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑔))
1918supeq1i 9516 . . . . . . . . . . . 12 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )
2019eqeq2i 2753 . . . . . . . . . . 11 (𝑥 = sup(ran 𝑆, ℝ*, < ) ↔ 𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))
2116, 20bitr4di 289 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ↔ 𝑥 = sup(ran 𝑆, ℝ*, < )))
2221anbi2d 629 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2322rexbidv 3185 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < ))))
2423ralrab 3715 . . . . . . 7 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
25 ralcom 3295 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
26 r19.23v 3189 . . . . . . . . 9 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
2726ralbii 3099 . . . . . . . 8 (∀𝑥 ∈ ℝ*𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
28 ancomst 464 . . . . . . . . . . . 12 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥))
29 impexp 450 . . . . . . . . . . . 12 (((𝑥 = sup(ran 𝑆, ℝ*, < ) ∧ 𝐴 ran ((,) ∘ 𝑔)) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3028, 29bitri 275 . . . . . . . . . . 11 (((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
3130ralbii 3099 . . . . . . . . . 10 (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)))
32 elovolmlem 25528 . . . . . . . . . . . . . . 15 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 eqid 2740 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔)
3433, 17ovolsf 25526 . . . . . . . . . . . . . . 15 (𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
3532, 34sylbi 217 . . . . . . . . . . . . . 14 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑆:ℕ⟶(0[,)+∞))
3635frnd 6755 . . . . . . . . . . . . 13 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ran 𝑆 ⊆ (0[,)+∞))
37 icossxr 13492 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ*
3836, 37sstrdi 4021 . . . . . . . . . . . 12 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ran 𝑆 ⊆ ℝ*)
39 supxrcl 13377 . . . . . . . . . . . 12 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . 11 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
41 breq2 5170 . . . . . . . . . . . . 13 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4241imbi2d 340 . . . . . . . . . . . 12 (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4342ceqsralv 3531 . . . . . . . . . . 11 (sup(ran 𝑆, ℝ*, < ) ∈ ℝ* → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4440, 43syl 17 . . . . . . . . . 10 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ* (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥)) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4531, 44bitrid 283 . . . . . . . . 9 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ (𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
4645ralbiia 3097 . . . . . . . 8 (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∀𝑥 ∈ ℝ* ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4725, 27, 463bitr3i 301 . . . . . . 7 (∀𝑥 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = sup(ran 𝑆, ℝ*, < )) → ((vol*‘𝐴) + 𝐵) ≤ 𝑥) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4824, 47bitri 275 . . . . . 6 (∀𝑥 ∈ {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ((vol*‘𝐴) + 𝐵) ≤ 𝑥 ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
4915, 48bitr2di 288 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ((vol*‘𝐴) + 𝐵) ≤ inf({𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))}, ℝ*, < )))
5011, 49bitr4d 282 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((vol*‘𝐴) + 𝐵) ≤ (vol*‘𝐴) ↔ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ))))
517, 50mtbid 324 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
52 rexanali 3108 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) ↔ ¬ ∀𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) → ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
5351, 52sylibr 234 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
54 xrltnle 11357 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) ↔ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )))
55 xrltle 13211 . . . . . 6 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) < ((vol*‘𝐴) + 𝐵) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5654, 55sylbird 260 . . . . 5 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + 𝐵) ∈ ℝ*) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5740, 13, 56syl2anr 596 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
5857anim2d 611 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
5958reximdva 3174 . 2 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ ¬ ((vol*‘𝐴) + 𝐵) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))))
6053, 59mpd 15 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976   cuni 4931   class class class wbr 5166   × cxp 5698  ran crn 5701  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  supcsup 9509  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  +crp 13057  (,)cioo 13407  [,)cico 13409  seqcseq 14052  abscabs 15283  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-ovol 25518
This theorem is referenced by:  ovolunlem2  25552  ovoliunlem3  25558  ovolscalem2  25568  ioombl1  25616  uniioombl  25643  mblfinlem3  37619  mblfinlem4  37620
  Copyright terms: Public domain W3C validator