Step | Hyp | Ref
| Expression |
1 | | nmoubi.u |
. . . . . 6
β’ π β NrmCVec |
2 | | nmoubi.w |
. . . . . 6
β’ π β NrmCVec |
3 | | nmoubi.1 |
. . . . . . 7
β’ π = (BaseSetβπ) |
4 | | nmoubi.y |
. . . . . . 7
β’ π = (BaseSetβπ) |
5 | | nmoubi.l |
. . . . . . 7
β’ πΏ =
(normCVβπ) |
6 | | nmoubi.m |
. . . . . . 7
β’ π =
(normCVβπ) |
7 | | nmoubi.3 |
. . . . . . 7
β’ π = (π normOpOLD π) |
8 | 3, 4, 5, 6, 7 | nmooval 30011 |
. . . . . 6
β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β (πβπ) = sup({π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}, β*, <
)) |
9 | 1, 2, 8 | mp3an12 1451 |
. . . . 5
β’ (π:πβΆπ β (πβπ) = sup({π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}, β*, <
)) |
10 | 9 | breq1d 5158 |
. . . 4
β’ (π:πβΆπ β ((πβπ) β€ π΄ β sup({π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}, β*, < ) β€ π΄)) |
11 | 10 | adantr 481 |
. . 3
β’ ((π:πβΆπ β§ π΄ β β*) β ((πβπ) β€ π΄ β sup({π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}, β*, < ) β€ π΄)) |
12 | 4, 6 | nmosetre 30012 |
. . . . . 6
β’ ((π β NrmCVec β§ π:πβΆπ) β {π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))} β β) |
13 | 2, 12 | mpan 688 |
. . . . 5
β’ (π:πβΆπ β {π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))} β β) |
14 | | ressxr 11257 |
. . . . 5
β’ β
β β* |
15 | 13, 14 | sstrdi 3994 |
. . . 4
β’ (π:πβΆπ β {π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))} β
β*) |
16 | | supxrleub 13304 |
. . . 4
β’ (({π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))} β β* β§ π΄ β β*)
β (sup({π¦ β£
βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}, β*, < ) β€ π΄ β βπ§ β {π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}π§ β€ π΄)) |
17 | 15, 16 | sylan 580 |
. . 3
β’ ((π:πβΆπ β§ π΄ β β*) β
(sup({π¦ β£
βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}, β*, < ) β€ π΄ β βπ§ β {π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}π§ β€ π΄)) |
18 | 11, 17 | bitrd 278 |
. 2
β’ ((π:πβΆπ β§ π΄ β β*) β ((πβπ) β€ π΄ β βπ§ β {π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}π§ β€ π΄)) |
19 | | eqeq1 2736 |
. . . . . 6
β’ (π¦ = π§ β (π¦ = (πβ(πβπ₯)) β π§ = (πβ(πβπ₯)))) |
20 | 19 | anbi2d 629 |
. . . . 5
β’ (π¦ = π§ β (((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯))) β ((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))))) |
21 | 20 | rexbidv 3178 |
. . . 4
β’ (π¦ = π§ β (βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯))) β βπ₯ β π ((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))))) |
22 | 21 | ralab 3687 |
. . 3
β’
(βπ§ β
{π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}π§ β€ π΄ β βπ§(βπ₯ β π ((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄)) |
23 | | ralcom4 3283 |
. . . 4
β’
(βπ₯ β
π βπ§(((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β βπ§βπ₯ β π (((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄)) |
24 | | ancomst 465 |
. . . . . . . 8
β’ ((((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β ((π§ = (πβ(πβπ₯)) β§ (πΏβπ₯) β€ 1) β π§ β€ π΄)) |
25 | | impexp 451 |
. . . . . . . 8
β’ (((π§ = (πβ(πβπ₯)) β§ (πΏβπ₯) β€ 1) β π§ β€ π΄) β (π§ = (πβ(πβπ₯)) β ((πΏβπ₯) β€ 1 β π§ β€ π΄))) |
26 | 24, 25 | bitri 274 |
. . . . . . 7
β’ ((((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β (π§ = (πβ(πβπ₯)) β ((πΏβπ₯) β€ 1 β π§ β€ π΄))) |
27 | 26 | albii 1821 |
. . . . . 6
β’
(βπ§(((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β βπ§(π§ = (πβ(πβπ₯)) β ((πΏβπ₯) β€ 1 β π§ β€ π΄))) |
28 | | fvex 6904 |
. . . . . . 7
β’ (πβ(πβπ₯)) β V |
29 | | breq1 5151 |
. . . . . . . 8
β’ (π§ = (πβ(πβπ₯)) β (π§ β€ π΄ β (πβ(πβπ₯)) β€ π΄)) |
30 | 29 | imbi2d 340 |
. . . . . . 7
β’ (π§ = (πβ(πβπ₯)) β (((πΏβπ₯) β€ 1 β π§ β€ π΄) β ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄))) |
31 | 28, 30 | ceqsalv 3511 |
. . . . . 6
β’
(βπ§(π§ = (πβ(πβπ₯)) β ((πΏβπ₯) β€ 1 β π§ β€ π΄)) β ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄)) |
32 | 27, 31 | bitri 274 |
. . . . 5
β’
(βπ§(((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄)) |
33 | 32 | ralbii 3093 |
. . . 4
β’
(βπ₯ β
π βπ§(((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β βπ₯ β π ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄)) |
34 | | r19.23v 3182 |
. . . . 5
β’
(βπ₯ β
π (((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β (βπ₯ β π ((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄)) |
35 | 34 | albii 1821 |
. . . 4
β’
(βπ§βπ₯ β π (((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄) β βπ§(βπ₯ β π ((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄)) |
36 | 23, 33, 35 | 3bitr3i 300 |
. . 3
β’
(βπ₯ β
π ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄) β βπ§(βπ₯ β π ((πΏβπ₯) β€ 1 β§ π§ = (πβ(πβπ₯))) β π§ β€ π΄)) |
37 | 22, 36 | bitr4i 277 |
. 2
β’
(βπ§ β
{π¦ β£ βπ₯ β π ((πΏβπ₯) β€ 1 β§ π¦ = (πβ(πβπ₯)))}π§ β€ π΄ β βπ₯ β π ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄)) |
38 | 18, 37 | bitrdi 286 |
1
β’ ((π:πβΆπ β§ π΄ β β*) β ((πβπ) β€ π΄ β βπ₯ β π ((πΏβπ₯) β€ 1 β (πβ(πβπ₯)) β€ π΄))) |