MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Visualization version   GIF version

Theorem nmoubi 30530
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nmoubi.y π‘Œ = (BaseSetβ€˜π‘Š)
nmoubi.l 𝐿 = (normCVβ€˜π‘ˆ)
nmoubi.m 𝑀 = (normCVβ€˜π‘Š)
nmoubi.3 𝑁 = (π‘ˆ normOpOLD π‘Š)
nmoubi.u π‘ˆ ∈ NrmCVec
nmoubi.w π‘Š ∈ NrmCVec
Assertion
Ref Expression
nmoubi ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐿   π‘₯,π‘ˆ   π‘₯,π‘Š   π‘₯,π‘Œ   π‘₯,𝑀   π‘₯,𝑇   π‘₯,𝑋
Allowed substitution hint:   𝑁(π‘₯)

Proof of Theorem nmoubi
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6 π‘ˆ ∈ NrmCVec
2 nmoubi.w . . . . . 6 π‘Š ∈ NrmCVec
3 nmoubi.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
4 nmoubi.y . . . . . . 7 π‘Œ = (BaseSetβ€˜π‘Š)
5 nmoubi.l . . . . . . 7 𝐿 = (normCVβ€˜π‘ˆ)
6 nmoubi.m . . . . . . 7 𝑀 = (normCVβ€˜π‘Š)
7 nmoubi.3 . . . . . . 7 𝑁 = (π‘ˆ normOpOLD π‘Š)
83, 4, 5, 6, 7nmooval 30521 . . . . . 6 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
91, 2, 8mp3an12 1447 . . . . 5 (𝑇:π‘‹βŸΆπ‘Œ β†’ (π‘β€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
109breq1d 5151 . . . 4 (𝑇:π‘‹βŸΆπ‘Œ β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴))
1110adantr 480 . . 3 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴))
124, 6nmosetre 30522 . . . . . 6 ((π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ)
132, 12mpan 687 . . . . 5 (𝑇:π‘‹βŸΆπ‘Œ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ)
14 ressxr 11259 . . . . 5 ℝ βŠ† ℝ*
1513, 14sstrdi 3989 . . . 4 (𝑇:π‘‹βŸΆπ‘Œ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ*)
16 supxrleub 13308 . . . 4 (({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ* ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
1715, 16sylan 579 . . 3 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
1811, 17bitrd 279 . 2 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
19 eqeq1 2730 . . . . . 6 (𝑦 = 𝑧 β†’ (𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)) ↔ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))))
2019anbi2d 628 . . . . 5 (𝑦 = 𝑧 β†’ (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯))) ↔ ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)))))
2120rexbidv 3172 . . . 4 (𝑦 = 𝑧 β†’ (βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯))) ↔ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)))))
2221ralab 3682 . . 3 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
23 ralcom4 3277 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§βˆ€π‘₯ ∈ 𝑋 (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
24 ancomst 464 . . . . . . . 8 ((((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ ((𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) ∧ (πΏβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
25 impexp 450 . . . . . . . 8 (((𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) ∧ (πΏβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
2624, 25bitri 275 . . . . . . 7 ((((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
2726albii 1813 . . . . . 6 (βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
28 fvex 6897 . . . . . . 7 (π‘€β€˜(π‘‡β€˜π‘₯)) ∈ V
29 breq1 5144 . . . . . . . 8 (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ (𝑧 ≀ 𝐴 ↔ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3029imbi2d 340 . . . . . . 7 (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ (((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴) ↔ ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
3128, 30ceqsalv 3506 . . . . . 6 (βˆ€π‘§(𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)) ↔ ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3227, 31bitri 275 . . . . 5 (βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3332ralbii 3087 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
34 r19.23v 3176 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ (βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
3534albii 1813 . . . 4 (βˆ€π‘§βˆ€π‘₯ ∈ 𝑋 (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
3623, 33, 353bitr3i 301 . . 3 (βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
3722, 36bitr4i 278 . 2 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3818, 37bitrdi 287 1 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395  βˆ€wal 1531   = wceq 1533   ∈ wcel 2098  {cab 2703  βˆ€wral 3055  βˆƒwrex 3064   βŠ† wss 3943   class class class wbr 5141  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  supcsup 9434  β„cr 11108  1c1 11110  β„*cxr 11248   < clt 11249   ≀ cle 11250  NrmCVeccnv 30342  BaseSetcba 30344  normCVcnmcv 30348   normOpOLD cnmoo 30499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-vc 30317  df-nv 30350  df-va 30353  df-ba 30354  df-sm 30355  df-0v 30356  df-nmcv 30358  df-nmoo 30503
This theorem is referenced by:  nmoub3i  30531  nmobndi  30533  ubthlem2  30629
  Copyright terms: Public domain W3C validator