MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Visualization version   GIF version

Theorem nmoubi 29113
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoubi ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoubi
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6 𝑈 ∈ NrmCVec
2 nmoubi.w . . . . . 6 𝑊 ∈ NrmCVec
3 nmoubi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 nmoubi.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
5 nmoubi.l . . . . . . 7 𝐿 = (normCV𝑈)
6 nmoubi.m . . . . . . 7 𝑀 = (normCV𝑊)
7 nmoubi.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
83, 4, 5, 6, 7nmooval 29104 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
91, 2, 8mp3an12 1449 . . . . 5 (𝑇:𝑋𝑌 → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
109breq1d 5088 . . . 4 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
1110adantr 480 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
124, 6nmosetre 29105 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
132, 12mpan 686 . . . . 5 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
14 ressxr 11003 . . . . 5 ℝ ⊆ ℝ*
1513, 14sstrdi 3937 . . . 4 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*)
16 supxrleub 13042 . . . 4 (({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1715, 16sylan 579 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1811, 17bitrd 278 . 2 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
19 eqeq1 2743 . . . . . 6 (𝑦 = 𝑧 → (𝑦 = (𝑀‘(𝑇𝑥)) ↔ 𝑧 = (𝑀‘(𝑇𝑥))))
2019anbi2d 628 . . . . 5 (𝑦 = 𝑧 → (((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2120rexbidv 3227 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2221ralab 3629 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
23 ralcom4 3163 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
24 ancomst 464 . . . . . . . 8 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴))
25 impexp 450 . . . . . . . 8 (((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2624, 25bitri 274 . . . . . . 7 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2726albii 1825 . . . . . 6 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
28 fvex 6781 . . . . . . 7 (𝑀‘(𝑇𝑥)) ∈ V
29 breq1 5081 . . . . . . . 8 (𝑧 = (𝑀‘(𝑇𝑥)) → (𝑧𝐴 ↔ (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3029imbi2d 340 . . . . . . 7 (𝑧 = (𝑀‘(𝑇𝑥)) → (((𝐿𝑥) ≤ 1 → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
3128, 30ceqsalv 3465 . . . . . 6 (∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3227, 31bitri 274 . . . . 5 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3332ralbii 3092 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
34 r19.23v 3209 . . . . 5 (∀𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3534albii 1825 . . . 4 (∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3623, 33, 353bitr3i 300 . . 3 (∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3722, 36bitr4i 277 . 2 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3818, 37bitrdi 286 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539   = wceq 1541  wcel 2109  {cab 2716  wral 3065  wrex 3066  wss 3891   class class class wbr 5078  wf 6426  cfv 6430  (class class class)co 7268  supcsup 9160  cr 10854  1c1 10856  *cxr 10992   < clt 10993  cle 10994  NrmCVeccnv 28925  BaseSetcba 28927  normCVcnmcv 28931   normOpOLD cnmoo 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-vc 28900  df-nv 28933  df-va 28936  df-ba 28937  df-sm 28938  df-0v 28939  df-nmcv 28941  df-nmoo 29086
This theorem is referenced by:  nmoub3i  29114  nmobndi  29116  ubthlem2  29212
  Copyright terms: Public domain W3C validator