MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Visualization version   GIF version

Theorem nmoubi 30020
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nmoubi.y π‘Œ = (BaseSetβ€˜π‘Š)
nmoubi.l 𝐿 = (normCVβ€˜π‘ˆ)
nmoubi.m 𝑀 = (normCVβ€˜π‘Š)
nmoubi.3 𝑁 = (π‘ˆ normOpOLD π‘Š)
nmoubi.u π‘ˆ ∈ NrmCVec
nmoubi.w π‘Š ∈ NrmCVec
Assertion
Ref Expression
nmoubi ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐿   π‘₯,π‘ˆ   π‘₯,π‘Š   π‘₯,π‘Œ   π‘₯,𝑀   π‘₯,𝑇   π‘₯,𝑋
Allowed substitution hint:   𝑁(π‘₯)

Proof of Theorem nmoubi
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6 π‘ˆ ∈ NrmCVec
2 nmoubi.w . . . . . 6 π‘Š ∈ NrmCVec
3 nmoubi.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
4 nmoubi.y . . . . . . 7 π‘Œ = (BaseSetβ€˜π‘Š)
5 nmoubi.l . . . . . . 7 𝐿 = (normCVβ€˜π‘ˆ)
6 nmoubi.m . . . . . . 7 𝑀 = (normCVβ€˜π‘Š)
7 nmoubi.3 . . . . . . 7 𝑁 = (π‘ˆ normOpOLD π‘Š)
83, 4, 5, 6, 7nmooval 30011 . . . . . 6 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
91, 2, 8mp3an12 1451 . . . . 5 (𝑇:π‘‹βŸΆπ‘Œ β†’ (π‘β€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
109breq1d 5158 . . . 4 (𝑇:π‘‹βŸΆπ‘Œ β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴))
1110adantr 481 . . 3 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴))
124, 6nmosetre 30012 . . . . . 6 ((π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ)
132, 12mpan 688 . . . . 5 (𝑇:π‘‹βŸΆπ‘Œ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ)
14 ressxr 11257 . . . . 5 ℝ βŠ† ℝ*
1513, 14sstrdi 3994 . . . 4 (𝑇:π‘‹βŸΆπ‘Œ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ*)
16 supxrleub 13304 . . . 4 (({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ* ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
1715, 16sylan 580 . . 3 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
1811, 17bitrd 278 . 2 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
19 eqeq1 2736 . . . . . 6 (𝑦 = 𝑧 β†’ (𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)) ↔ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))))
2019anbi2d 629 . . . . 5 (𝑦 = 𝑧 β†’ (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯))) ↔ ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)))))
2120rexbidv 3178 . . . 4 (𝑦 = 𝑧 β†’ (βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯))) ↔ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)))))
2221ralab 3687 . . 3 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
23 ralcom4 3283 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§βˆ€π‘₯ ∈ 𝑋 (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
24 ancomst 465 . . . . . . . 8 ((((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ ((𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) ∧ (πΏβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
25 impexp 451 . . . . . . . 8 (((𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) ∧ (πΏβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
2624, 25bitri 274 . . . . . . 7 ((((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
2726albii 1821 . . . . . 6 (βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
28 fvex 6904 . . . . . . 7 (π‘€β€˜(π‘‡β€˜π‘₯)) ∈ V
29 breq1 5151 . . . . . . . 8 (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ (𝑧 ≀ 𝐴 ↔ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3029imbi2d 340 . . . . . . 7 (𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ (((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴) ↔ ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
3128, 30ceqsalv 3511 . . . . . 6 (βˆ€π‘§(𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯)) β†’ ((πΏβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)) ↔ ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3227, 31bitri 274 . . . . 5 (βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3332ralbii 3093 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘§(((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
34 r19.23v 3182 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ (βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
3534albii 1821 . . . 4 (βˆ€π‘§βˆ€π‘₯ ∈ 𝑋 (((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
3623, 33, 353bitr3i 300 . . 3 (βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑧 = (π‘€β€˜(π‘‡β€˜π‘₯))) β†’ 𝑧 ≀ 𝐴))
3722, 36bitr4i 277 . 2 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (π‘€β€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
3818, 37bitrdi 286 1 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝐴 ∈ ℝ*) β†’ ((π‘β€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑋 ((πΏβ€˜π‘₯) ≀ 1 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3948   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  supcsup 9434  β„cr 11108  1c1 11110  β„*cxr 11246   < clt 11247   ≀ cle 11248  NrmCVeccnv 29832  BaseSetcba 29834  normCVcnmcv 29838   normOpOLD cnmoo 29989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-vc 29807  df-nv 29840  df-va 29843  df-ba 29844  df-sm 29845  df-0v 29846  df-nmcv 29848  df-nmoo 29993
This theorem is referenced by:  nmoub3i  30021  nmobndi  30023  ubthlem2  30119
  Copyright terms: Public domain W3C validator