MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Visualization version   GIF version

Theorem nmoubi 30806
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoubi ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoubi
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6 𝑈 ∈ NrmCVec
2 nmoubi.w . . . . . 6 𝑊 ∈ NrmCVec
3 nmoubi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 nmoubi.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
5 nmoubi.l . . . . . . 7 𝐿 = (normCV𝑈)
6 nmoubi.m . . . . . . 7 𝑀 = (normCV𝑊)
7 nmoubi.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
83, 4, 5, 6, 7nmooval 30797 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
91, 2, 8mp3an12 1451 . . . . 5 (𝑇:𝑋𝑌 → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
109breq1d 5176 . . . 4 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
1110adantr 480 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
124, 6nmosetre 30798 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
132, 12mpan 689 . . . . 5 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
14 ressxr 11336 . . . . 5 ℝ ⊆ ℝ*
1513, 14sstrdi 4021 . . . 4 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*)
16 supxrleub 13390 . . . 4 (({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1715, 16sylan 579 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1811, 17bitrd 279 . 2 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
19 eqeq1 2744 . . . . . 6 (𝑦 = 𝑧 → (𝑦 = (𝑀‘(𝑇𝑥)) ↔ 𝑧 = (𝑀‘(𝑇𝑥))))
2019anbi2d 629 . . . . 5 (𝑦 = 𝑧 → (((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2120rexbidv 3185 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2221ralab 3713 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
23 ralcom4 3292 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
24 ancomst 464 . . . . . . . 8 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴))
25 impexp 450 . . . . . . . 8 (((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2624, 25bitri 275 . . . . . . 7 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2726albii 1817 . . . . . 6 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
28 fvex 6935 . . . . . . 7 (𝑀‘(𝑇𝑥)) ∈ V
29 breq1 5169 . . . . . . . 8 (𝑧 = (𝑀‘(𝑇𝑥)) → (𝑧𝐴 ↔ (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3029imbi2d 340 . . . . . . 7 (𝑧 = (𝑀‘(𝑇𝑥)) → (((𝐿𝑥) ≤ 1 → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
3128, 30ceqsalv 3529 . . . . . 6 (∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3227, 31bitri 275 . . . . 5 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3332ralbii 3099 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
34 r19.23v 3189 . . . . 5 (∀𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3534albii 1817 . . . 4 (∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3623, 33, 353bitr3i 301 . . 3 (∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3722, 36bitr4i 278 . 2 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3818, 37bitrdi 287 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  wf 6571  cfv 6575  (class class class)co 7450  supcsup 9511  cr 11185  1c1 11187  *cxr 11325   < clt 11326  cle 11327  NrmCVeccnv 30618  BaseSetcba 30620  normCVcnmcv 30624   normOpOLD cnmoo 30775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-sup 9513  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-vc 30593  df-nv 30626  df-va 30629  df-ba 30630  df-sm 30631  df-0v 30632  df-nmcv 30634  df-nmoo 30779
This theorem is referenced by:  nmoub3i  30807  nmobndi  30809  ubthlem2  30905
  Copyright terms: Public domain W3C validator