MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2leub Structured version   Visualization version   GIF version

Theorem itg2leub 24250
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2leub ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹

Proof of Theorem itg2leub
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21itg2val 24244 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
32adantr 481 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
43breq1d 5072 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴))
51itg2lcl 24243 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*
6 supxrleub 12712 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
75, 6mpan 686 . . . 4 (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
87adantl 482 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
9 eqeq1 2828 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (∫1𝑔) ↔ 𝑧 = (∫1𝑔)))
109anbi2d 628 . . . . . 6 (𝑥 = 𝑧 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑧 = (∫1𝑔))))
1110rexbidv 3301 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔))))
1211ralab 3687 . . . 4 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
13 r19.23v 3283 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
14 ancomst 465 . . . . . . . . 9 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴))
15 impexp 451 . . . . . . . . 9 (((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1614, 15bitri 276 . . . . . . . 8 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1716ralbii 3169 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1813, 17bitr3i 278 . . . . . 6 ((∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1918albii 1813 . . . . 5 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
20 ralcom4 3239 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
21 fvex 6679 . . . . . . . 8 (∫1𝑔) ∈ V
22 breq1 5065 . . . . . . . . 9 (𝑧 = (∫1𝑔) → (𝑧𝐴 ↔ (∫1𝑔) ≤ 𝐴))
2322imbi2d 342 . . . . . . . 8 (𝑧 = (∫1𝑔) → ((𝑔r𝐹𝑧𝐴) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
2421, 23ceqsalv 3537 . . . . . . 7 (∀𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2524ralbii 3169 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2620, 25bitr3i 278 . . . . 5 (∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2719, 26bitri 276 . . . 4 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2812, 27bitri 276 . . 3 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
298, 28syl6bb 288 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
304, 29bitrd 280 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1528   = wceq 1530  wcel 2106  {cab 2802  wral 3142  wrex 3143  wss 3939   class class class wbr 5062  dom cdm 5553  wf 6347  cfv 6351  (class class class)co 7151  r cofr 7401  supcsup 8896  cr 10528  0cc0 10529  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  [,]cicc 12734  1citg1 24131  2citg2 24132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xadd 12501  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-xmet 20454  df-met 20455  df-ovol 23980  df-vol 23981  df-mbf 24135  df-itg1 24136  df-itg2 24137
This theorem is referenced by:  itg2itg1  24252  itg2le  24255  itg2seq  24258  itg2lea  24260  itg2mulclem  24262  itg2splitlem  24264  itg2split  24265  itg2mono  24269  ftc1anclem5  34839
  Copyright terms: Public domain W3C validator