MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2leub Structured version   Visualization version   GIF version

Theorem itg2leub 24338
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2leub ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹

Proof of Theorem itg2leub
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21itg2val 24332 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
32adantr 484 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
43breq1d 5040 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴))
51itg2lcl 24331 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*
6 supxrleub 12707 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
75, 6mpan 689 . . . 4 (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
87adantl 485 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
9 eqeq1 2802 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (∫1𝑔) ↔ 𝑧 = (∫1𝑔)))
109anbi2d 631 . . . . . 6 (𝑥 = 𝑧 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑧 = (∫1𝑔))))
1110rexbidv 3256 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔))))
1211ralab 3632 . . . 4 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
13 r19.23v 3238 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
14 ancomst 468 . . . . . . . . 9 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴))
15 impexp 454 . . . . . . . . 9 (((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1614, 15bitri 278 . . . . . . . 8 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1716ralbii 3133 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1813, 17bitr3i 280 . . . . . 6 ((∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1918albii 1821 . . . . 5 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
20 ralcom4 3198 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
21 fvex 6658 . . . . . . . 8 (∫1𝑔) ∈ V
22 breq1 5033 . . . . . . . . 9 (𝑧 = (∫1𝑔) → (𝑧𝐴 ↔ (∫1𝑔) ≤ 𝐴))
2322imbi2d 344 . . . . . . . 8 (𝑧 = (∫1𝑔) → ((𝑔r𝐹𝑧𝐴) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
2421, 23ceqsalv 3479 . . . . . . 7 (∀𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2524ralbii 3133 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2620, 25bitr3i 280 . . . . 5 (∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2719, 26bitri 278 . . . 4 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2812, 27bitri 278 . . 3 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
298, 28syl6bb 290 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
304, 29bitrd 282 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388  supcsup 8888  cr 10525  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  [,]cicc 12729  1citg1 24219  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225
This theorem is referenced by:  itg2itg1  24340  itg2le  24343  itg2seq  24346  itg2lea  24348  itg2mulclem  24350  itg2splitlem  24352  itg2split  24353  itg2mono  24357  ftc1anclem5  35134
  Copyright terms: Public domain W3C validator