Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2leub | Structured version Visualization version GIF version |
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2leub | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2val 24428 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
4 | 3 | breq1d 5042 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴)) |
5 | 1 | itg2lcl 24427 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
6 | supxrleub 12760 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) | |
7 | 5, 6 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
8 | 7 | adantl 485 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
9 | eqeq1 2762 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = (∫1‘𝑔) ↔ 𝑧 = (∫1‘𝑔))) | |
10 | 9 | anbi2d 631 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
11 | 10 | rexbidv 3221 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
12 | 11 | ralab 3607 | . . . 4 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) |
13 | r19.23v 3203 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) | |
14 | ancomst 468 | . . . . . . . . 9 ⊢ (((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘r ≤ 𝐹) → 𝑧 ≤ 𝐴)) | |
15 | impexp 454 | . . . . . . . . 9 ⊢ (((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘r ≤ 𝐹) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
16 | 14, 15 | bitri 278 | . . . . . . . 8 ⊢ (((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
17 | 16 | ralbii 3097 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
18 | 13, 17 | bitr3i 280 | . . . . . 6 ⊢ ((∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
19 | 18 | albii 1821 | . . . . 5 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
20 | ralcom4 3162 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
21 | fvex 6671 | . . . . . . . 8 ⊢ (∫1‘𝑔) ∈ V | |
22 | breq1 5035 | . . . . . . . . 9 ⊢ (𝑧 = (∫1‘𝑔) → (𝑧 ≤ 𝐴 ↔ (∫1‘𝑔) ≤ 𝐴)) | |
23 | 22 | imbi2d 344 | . . . . . . . 8 ⊢ (𝑧 = (∫1‘𝑔) → ((𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴) ↔ (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
24 | 21, 23 | ceqsalv 3448 | . . . . . . 7 ⊢ (∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
25 | 24 | ralbii 3097 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
26 | 20, 25 | bitr3i 280 | . . . . 5 ⊢ (∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
27 | 19, 26 | bitri 278 | . . . 4 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
28 | 12, 27 | bitri 278 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
29 | 8, 28 | bitrdi 290 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
30 | 4, 29 | bitrd 282 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 ∃wrex 3071 ⊆ wss 3858 class class class wbr 5032 dom cdm 5524 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ∘r cofr 7404 supcsup 8937 ℝcr 10574 0cc0 10575 +∞cpnf 10710 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 [,]cicc 12782 ∫1citg1 24315 ∫2citg2 24316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-q 12389 df-rp 12431 df-xadd 12549 df-ioo 12783 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-sum 15091 df-xmet 20159 df-met 20160 df-ovol 24164 df-vol 24165 df-mbf 24319 df-itg1 24320 df-itg2 24321 |
This theorem is referenced by: itg2itg1 24436 itg2le 24439 itg2seq 24442 itg2lea 24444 itg2mulclem 24446 itg2splitlem 24448 itg2split 24449 itg2mono 24453 ftc1anclem5 35414 |
Copyright terms: Public domain | W3C validator |