![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2leub | Structured version Visualization version GIF version |
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2leub | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2val 25246 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
3 | 2 | adantr 482 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
4 | 3 | breq1d 5159 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴)) |
5 | 1 | itg2lcl 25245 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
6 | supxrleub 13305 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) | |
7 | 5, 6 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
8 | 7 | adantl 483 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
9 | eqeq1 2737 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = (∫1‘𝑔) ↔ 𝑧 = (∫1‘𝑔))) | |
10 | 9 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
11 | 10 | rexbidv 3179 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
12 | 11 | ralab 3688 | . . . 4 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) |
13 | r19.23v 3183 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) | |
14 | ancomst 466 | . . . . . . . . 9 ⊢ (((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘r ≤ 𝐹) → 𝑧 ≤ 𝐴)) | |
15 | impexp 452 | . . . . . . . . 9 ⊢ (((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘r ≤ 𝐹) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
16 | 14, 15 | bitri 275 | . . . . . . . 8 ⊢ (((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
17 | 16 | ralbii 3094 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
18 | 13, 17 | bitr3i 277 | . . . . . 6 ⊢ ((∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
19 | 18 | albii 1822 | . . . . 5 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
20 | ralcom4 3284 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
21 | fvex 6905 | . . . . . . . 8 ⊢ (∫1‘𝑔) ∈ V | |
22 | breq1 5152 | . . . . . . . . 9 ⊢ (𝑧 = (∫1‘𝑔) → (𝑧 ≤ 𝐴 ↔ (∫1‘𝑔) ≤ 𝐴)) | |
23 | 22 | imbi2d 341 | . . . . . . . 8 ⊢ (𝑧 = (∫1‘𝑔) → ((𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴) ↔ (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
24 | 21, 23 | ceqsalv 3512 | . . . . . . 7 ⊢ (∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
25 | 24 | ralbii 3094 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
26 | 20, 25 | bitr3i 277 | . . . . 5 ⊢ (∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
27 | 19, 26 | bitri 275 | . . . 4 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
28 | 12, 27 | bitri 275 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
29 | 8, 28 | bitrdi 287 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
30 | 4, 29 | bitrd 279 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 class class class wbr 5149 dom cdm 5677 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ∘r cofr 7669 supcsup 9435 ℝcr 11109 0cc0 11110 +∞cpnf 11245 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 [,]cicc 13327 ∫1citg1 25132 ∫2citg2 25133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-xadd 13093 df-ioo 13328 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 df-xmet 20937 df-met 20938 df-ovol 24981 df-vol 24982 df-mbf 25136 df-itg1 25137 df-itg2 25138 |
This theorem is referenced by: itg2itg1 25254 itg2le 25257 itg2seq 25260 itg2lea 25262 itg2mulclem 25264 itg2splitlem 25266 itg2split 25267 itg2mono 25271 ftc1anclem5 36565 |
Copyright terms: Public domain | W3C validator |