MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2leub Structured version   Visualization version   GIF version

Theorem itg2leub 25651
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2leub ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹

Proof of Theorem itg2leub
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21itg2val 25645 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
32adantr 480 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
43breq1d 5105 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴))
51itg2lcl 25644 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*
6 supxrleub 13246 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
75, 6mpan 690 . . . 4 (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
87adantl 481 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
9 eqeq1 2733 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (∫1𝑔) ↔ 𝑧 = (∫1𝑔)))
109anbi2d 630 . . . . . 6 (𝑥 = 𝑧 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑧 = (∫1𝑔))))
1110rexbidv 3153 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔))))
1211ralab 3655 . . . 4 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
13 r19.23v 3156 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
14 ancomst 464 . . . . . . . . 9 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴))
15 impexp 450 . . . . . . . . 9 (((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1614, 15bitri 275 . . . . . . . 8 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1716ralbii 3075 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1813, 17bitr3i 277 . . . . . 6 ((∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1918albii 1819 . . . . 5 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
20 ralcom4 3255 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
21 fvex 6839 . . . . . . . 8 (∫1𝑔) ∈ V
22 breq1 5098 . . . . . . . . 9 (𝑧 = (∫1𝑔) → (𝑧𝐴 ↔ (∫1𝑔) ≤ 𝐴))
2322imbi2d 340 . . . . . . . 8 (𝑧 = (∫1𝑔) → ((𝑔r𝐹𝑧𝐴) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
2421, 23ceqsalv 3478 . . . . . . 7 (∀𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2524ralbii 3075 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2620, 25bitr3i 277 . . . . 5 (∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2719, 26bitri 275 . . . 4 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2812, 27bitri 275 . . 3 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
298, 28bitrdi 287 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
304, 29bitrd 279 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  r cofr 7616  supcsup 9349  cr 11027  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  [,]cicc 13269  1citg1 25532  2citg2 25533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538
This theorem is referenced by:  itg2itg1  25653  itg2le  25656  itg2seq  25659  itg2lea  25661  itg2mulclem  25663  itg2splitlem  25665  itg2split  25666  itg2mono  25670  ftc1anclem5  37676
  Copyright terms: Public domain W3C validator