Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2leub | Structured version Visualization version GIF version |
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2leub | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2val 24798 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
4 | 3 | breq1d 5080 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴)) |
5 | 1 | itg2lcl 24797 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
6 | supxrleub 12989 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) | |
7 | 5, 6 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
9 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = (∫1‘𝑔) ↔ 𝑧 = (∫1‘𝑔))) | |
10 | 9 | anbi2d 628 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
11 | 10 | rexbidv 3225 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
12 | 11 | ralab 3621 | . . . 4 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) |
13 | r19.23v 3207 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) | |
14 | ancomst 464 | . . . . . . . . 9 ⊢ (((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘r ≤ 𝐹) → 𝑧 ≤ 𝐴)) | |
15 | impexp 450 | . . . . . . . . 9 ⊢ (((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘r ≤ 𝐹) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
16 | 14, 15 | bitri 274 | . . . . . . . 8 ⊢ (((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
17 | 16 | ralbii 3090 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
18 | 13, 17 | bitr3i 276 | . . . . . 6 ⊢ ((∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
19 | 18 | albii 1823 | . . . . 5 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
20 | ralcom4 3161 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
21 | fvex 6769 | . . . . . . . 8 ⊢ (∫1‘𝑔) ∈ V | |
22 | breq1 5073 | . . . . . . . . 9 ⊢ (𝑧 = (∫1‘𝑔) → (𝑧 ≤ 𝐴 ↔ (∫1‘𝑔) ≤ 𝐴)) | |
23 | 22 | imbi2d 340 | . . . . . . . 8 ⊢ (𝑧 = (∫1‘𝑔) → ((𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴) ↔ (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
24 | 21, 23 | ceqsalv 3457 | . . . . . . 7 ⊢ (∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
25 | 24 | ralbii 3090 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
26 | 20, 25 | bitr3i 276 | . . . . 5 ⊢ (∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
27 | 19, 26 | bitri 274 | . . . 4 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
28 | 12, 27 | bitri 274 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
29 | 8, 28 | bitrdi 286 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
30 | 4, 29 | bitrd 278 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘r cofr 7510 supcsup 9129 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,]cicc 13011 ∫1citg1 24684 ∫2citg2 24685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 |
This theorem is referenced by: itg2itg1 24806 itg2le 24809 itg2seq 24812 itg2lea 24814 itg2mulclem 24816 itg2splitlem 24818 itg2split 24819 itg2mono 24823 ftc1anclem5 35781 |
Copyright terms: Public domain | W3C validator |