MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2leub Structured version   Visualization version   GIF version

Theorem itg2leub 25102
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2leub ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹

Proof of Theorem itg2leub
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21itg2val 25096 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
32adantr 482 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
43breq1d 5116 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴))
51itg2lcl 25095 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*
6 supxrleub 13246 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
75, 6mpan 689 . . . 4 (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
87adantl 483 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
9 eqeq1 2741 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (∫1𝑔) ↔ 𝑧 = (∫1𝑔)))
109anbi2d 630 . . . . . 6 (𝑥 = 𝑧 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑧 = (∫1𝑔))))
1110rexbidv 3176 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔))))
1211ralab 3650 . . . 4 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
13 r19.23v 3180 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
14 ancomst 466 . . . . . . . . 9 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴))
15 impexp 452 . . . . . . . . 9 (((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1614, 15bitri 275 . . . . . . . 8 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1716ralbii 3097 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1813, 17bitr3i 277 . . . . . 6 ((∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1918albii 1822 . . . . 5 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
20 ralcom4 3270 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
21 fvex 6856 . . . . . . . 8 (∫1𝑔) ∈ V
22 breq1 5109 . . . . . . . . 9 (𝑧 = (∫1𝑔) → (𝑧𝐴 ↔ (∫1𝑔) ≤ 𝐴))
2322imbi2d 341 . . . . . . . 8 (𝑧 = (∫1𝑔) → ((𝑔r𝐹𝑧𝐴) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
2421, 23ceqsalv 3482 . . . . . . 7 (∀𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2524ralbii 3097 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2620, 25bitr3i 277 . . . . 5 (∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2719, 26bitri 275 . . . 4 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2812, 27bitri 275 . . 3 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
298, 28bitrdi 287 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
304, 29bitrd 279 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  {cab 2714  wral 3065  wrex 3074  wss 3911   class class class wbr 5106  dom cdm 5634  wf 6493  cfv 6497  (class class class)co 7358  r cofr 7617  supcsup 9377  cr 11051  0cc0 11052  +∞cpnf 11187  *cxr 11189   < clt 11190  cle 11191  [,]cicc 13268  1citg1 24982  2citg2 24983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9578  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8649  df-map 8768  df-pm 8769  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-inf 9380  df-oi 9447  df-dju 9838  df-card 9876  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-3 12218  df-n0 12415  df-z 12501  df-uz 12765  df-q 12875  df-rp 12917  df-xadd 13035  df-ioo 13269  df-ico 13271  df-icc 13272  df-fz 13426  df-fzo 13569  df-fl 13698  df-seq 13908  df-exp 13969  df-hash 14232  df-cj 14985  df-re 14986  df-im 14987  df-sqrt 15121  df-abs 15122  df-clim 15371  df-sum 15572  df-xmet 20792  df-met 20793  df-ovol 24831  df-vol 24832  df-mbf 24986  df-itg1 24987  df-itg2 24988
This theorem is referenced by:  itg2itg1  25104  itg2le  25107  itg2seq  25110  itg2lea  25112  itg2mulclem  25114  itg2splitlem  25116  itg2split  25117  itg2mono  25121  ftc1anclem5  36158
  Copyright terms: Public domain W3C validator