MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2leub Structured version   Visualization version   GIF version

Theorem itg2leub 24337
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2leub ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹

Proof of Theorem itg2leub
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21itg2val 24331 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
32adantr 483 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
43breq1d 5078 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴))
51itg2lcl 24330 . . . . 5 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*
6 supxrleub 12722 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
75, 6mpan 688 . . . 4 (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
87adantl 484 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴))
9 eqeq1 2827 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (∫1𝑔) ↔ 𝑧 = (∫1𝑔)))
109anbi2d 630 . . . . . 6 (𝑥 = 𝑧 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝑧 = (∫1𝑔))))
1110rexbidv 3299 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔))))
1211ralab 3686 . . . 4 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
13 r19.23v 3281 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴))
14 ancomst 467 . . . . . . . . 9 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴))
15 impexp 453 . . . . . . . . 9 (((𝑧 = (∫1𝑔) ∧ 𝑔r𝐹) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1614, 15bitri 277 . . . . . . . 8 (((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ (𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1716ralbii 3167 . . . . . . 7 (∀𝑔 ∈ dom ∫1((𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1813, 17bitr3i 279 . . . . . 6 ((∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
1918albii 1820 . . . . 5 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
20 ralcom4 3237 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)))
21 fvex 6685 . . . . . . . 8 (∫1𝑔) ∈ V
22 breq1 5071 . . . . . . . . 9 (𝑧 = (∫1𝑔) → (𝑧𝐴 ↔ (∫1𝑔) ≤ 𝐴))
2322imbi2d 343 . . . . . . . 8 (𝑧 = (∫1𝑔) → ((𝑔r𝐹𝑧𝐴) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
2421, 23ceqsalv 3534 . . . . . . 7 (∀𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ (𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2524ralbii 3167 . . . . . 6 (∀𝑔 ∈ dom ∫1𝑧(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2620, 25bitr3i 279 . . . . 5 (∀𝑧𝑔 ∈ dom ∫1(𝑧 = (∫1𝑔) → (𝑔r𝐹𝑧𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2719, 26bitri 277 . . . 4 (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑧 = (∫1𝑔)) → 𝑧𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
2812, 27bitri 277 . . 3 (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}𝑧𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴))
298, 28syl6bb 289 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
304, 29bitrd 281 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐹 → (∫1𝑔) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  wss 3938   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  r cofr 7410  supcsup 8906  cr 10538  0cc0 10539  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  [,]cicc 12744  1citg1 24218  2citg2 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224
This theorem is referenced by:  itg2itg1  24339  itg2le  24342  itg2seq  24345  itg2lea  24347  itg2mulclem  24349  itg2splitlem  24351  itg2split  24352  itg2mono  24356  ftc1anclem5  34973
  Copyright terms: Public domain W3C validator