Proof of Theorem ntrneiiso
Step | Hyp | Ref
| Expression |
1 | | dfss2 3907 |
. . . . . . . 8
⊢ ((𝐼‘𝑠) ⊆ (𝐼‘𝑡) ↔ ∀𝑥(𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) |
2 | 1 | imbi2i 336 |
. . . . . . 7
⊢ ((𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ (𝑠 ⊆ 𝑡 → ∀𝑥(𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))) |
3 | | 19.21v 1942 |
. . . . . . 7
⊢
(∀𝑥(𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ (𝑠 ⊆ 𝑡 → ∀𝑥(𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))) |
4 | 2, 3 | bitr4i 277 |
. . . . . 6
⊢ ((𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥(𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))) |
5 | | ax-1 6 |
. . . . . . . . . 10
⊢ ((𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) → (𝑥 ∈ 𝐵 → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))))) |
6 | | simpll 764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑) |
7 | | ntrnei.o |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
8 | | ntrnei.f |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
9 | | ntrnei.r |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼𝐹𝑁) |
10 | 7, 8, 9 | ntrneiiex 41686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
11 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
12 | 6, 10, 11 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
13 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
14 | 12, 13 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
15 | 14 | elpwid 4544 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ⊆ 𝐵) |
16 | 15 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼‘𝑠)) → 𝑥 ∈ 𝐵) |
17 | 16 | pm2.24d 151 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼‘𝑠)) → (¬ 𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐼‘𝑡))) |
18 | 17 | ex 413 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘𝑠) → (¬ 𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐼‘𝑡)))) |
19 | 18 | com23 86 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))) |
20 | 19 | a1dd 50 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (¬ 𝑥 ∈ 𝐵 → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))))) |
21 | | idd 24 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))))) |
22 | 20, 21 | jad 187 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑥 ∈ 𝐵 → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))) → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))))) |
23 | 5, 22 | impbid2 225 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ (𝑥 ∈ 𝐵 → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))))) |
24 | 23 | albidv 1923 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥(𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)))))) |
25 | | df-ral 3069 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))))) |
26 | 24, 25 | bitr4di 289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥(𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ ∀𝑥 ∈ 𝐵 (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))))) |
27 | 9 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
28 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
29 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
30 | 7, 8, 27, 28, 29 | ntrneiel 41691 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑥))) |
31 | | simplr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑡 ∈ 𝒫 𝐵) |
32 | 7, 8, 27, 28, 31 | ntrneiel 41691 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑡) ↔ 𝑡 ∈ (𝑁‘𝑥))) |
33 | 30, 32 | imbi12d 345 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡)) ↔ (𝑠 ∈ (𝑁‘𝑥) → 𝑡 ∈ (𝑁‘𝑥)))) |
34 | 33 | imbi2d 341 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ (𝑠 ⊆ 𝑡 → (𝑠 ∈ (𝑁‘𝑥) → 𝑡 ∈ (𝑁‘𝑥))))) |
35 | | impexp 451 |
. . . . . . . . . 10
⊢ (((𝑠 ⊆ 𝑡 ∧ 𝑠 ∈ (𝑁‘𝑥)) → 𝑡 ∈ (𝑁‘𝑥)) ↔ (𝑠 ⊆ 𝑡 → (𝑠 ∈ (𝑁‘𝑥) → 𝑡 ∈ (𝑁‘𝑥)))) |
36 | | ancomst 465 |
. . . . . . . . . 10
⊢ (((𝑠 ⊆ 𝑡 ∧ 𝑠 ∈ (𝑁‘𝑥)) → 𝑡 ∈ (𝑁‘𝑥)) ↔ ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥))) |
37 | 35, 36 | bitr3i 276 |
. . . . . . . . 9
⊢ ((𝑠 ⊆ 𝑡 → (𝑠 ∈ (𝑁‘𝑥) → 𝑡 ∈ (𝑁‘𝑥))) ↔ ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥))) |
38 | 34, 37 | bitrdi 287 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
39 | 38 | ralbidva 3111 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ 𝐵 (𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
40 | 26, 39 | bitrd 278 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥(𝑠 ⊆ 𝑡 → (𝑥 ∈ (𝐼‘𝑠) → 𝑥 ∈ (𝐼‘𝑡))) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
41 | 4, 40 | bitrid 282 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
42 | 41 | ralbidva 3111 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
43 | | ralcom 3166 |
. . . 4
⊢
(∀𝑡 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥))) |
44 | 42, 43 | bitrdi 287 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
45 | 44 | ralbidva 3111 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |
46 | | ralcom 3166 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥))) |
47 | 45, 46 | bitrdi 287 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) |