MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-mulf Structured version   Visualization version   GIF version

Axiom ax-mulf 11207
Description: Multiplication is an operation on the complex numbers. This axiom tells us that · is defined only on complex numbers which is analogous to the way that other operations are defined, for example see subf 11482 or eff 16095. However, while Metamath can handle this axiom, if we wish to work with weaker complex number axioms, we can avoid it by using the less specific mulcl 11211. Note that uses of ax-mulf 11207 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of ·, as seen in mpomulf 11222.

This axiom is justified by Theorem axmulf 11158. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

Assertion
Ref Expression
ax-mulf · :(ℂ × ℂ)⟶ℂ

Detailed syntax breakdown of Axiom ax-mulf
StepHypRef Expression
1 cc 11125 . . 3 class
21, 1cxp 5652 . 2 class (ℂ × ℂ)
3 cmul 11132 . 2 class ·
42, 1, 3wf 6526 1 wff · :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
This axiom is referenced by:  mulnzcnf  11881  mulex  13005  cnfldmul  21321  dfcnfldOLD  21329  mulcn  24805  iimulcnOLD  24884  dvdsmulf1o  27156  fsumdvdsmulOLD  27157  cncvcOLD  30510  xrge0pluscn  33917
  Copyright terms: Public domain W3C validator