![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimmulOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rlimmul 15586 as of 27-Sep-2024. (Contributed by Mario Carneiro, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rlimadd.3 | β’ ((π β§ π₯ β π΄) β π΅ β π) |
rlimadd.4 | β’ ((π β§ π₯ β π΄) β πΆ β π) |
rlimadd.5 | β’ (π β (π₯ β π΄ β¦ π΅) βπ π·) |
rlimadd.6 | β’ (π β (π₯ β π΄ β¦ πΆ) βπ πΈ) |
Ref | Expression |
---|---|
rlimmulOLD | β’ (π β (π₯ β π΄ β¦ (π΅ Β· πΆ)) βπ (π· Β· πΈ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimadd.3 | . . 3 β’ ((π β§ π₯ β π΄) β π΅ β π) | |
2 | rlimadd.5 | . . 3 β’ (π β (π₯ β π΄ β¦ π΅) βπ π·) | |
3 | 1, 2 | rlimmptrcl 15548 | . 2 β’ ((π β§ π₯ β π΄) β π΅ β β) |
4 | rlimadd.4 | . . 3 β’ ((π β§ π₯ β π΄) β πΆ β π) | |
5 | rlimadd.6 | . . 3 β’ (π β (π₯ β π΄ β¦ πΆ) βπ πΈ) | |
6 | 4, 5 | rlimmptrcl 15548 | . 2 β’ ((π β§ π₯ β π΄) β πΆ β β) |
7 | rlimcl 15443 | . . 3 β’ ((π₯ β π΄ β¦ π΅) βπ π· β π· β β) | |
8 | 2, 7 | syl 17 | . 2 β’ (π β π· β β) |
9 | rlimcl 15443 | . . 3 β’ ((π₯ β π΄ β¦ πΆ) βπ πΈ β πΈ β β) | |
10 | 5, 9 | syl 17 | . 2 β’ (π β πΈ β β) |
11 | ax-mulf 11186 | . . 3 β’ Β· :(β Γ β)βΆβ | |
12 | 11 | a1i 11 | . 2 β’ (π β Β· :(β Γ β)βΆβ) |
13 | simpr 485 | . . 3 β’ ((π β§ π¦ β β+) β π¦ β β+) | |
14 | 8 | adantr 481 | . . 3 β’ ((π β§ π¦ β β+) β π· β β) |
15 | 10 | adantr 481 | . . 3 β’ ((π β§ π¦ β β+) β πΈ β β) |
16 | mulcn2 15536 | . . 3 β’ ((π¦ β β+ β§ π· β β β§ πΈ β β) β βπ§ β β+ βπ€ β β+ βπ’ β β βπ£ β β (((absβ(π’ β π·)) < π§ β§ (absβ(π£ β πΈ)) < π€) β (absβ((π’ Β· π£) β (π· Β· πΈ))) < π¦)) | |
17 | 13, 14, 15, 16 | syl3anc 1371 | . 2 β’ ((π β§ π¦ β β+) β βπ§ β β+ βπ€ β β+ βπ’ β β βπ£ β β (((absβ(π’ β π·)) < π§ β§ (absβ(π£ β πΈ)) < π€) β (absβ((π’ Β· π£) β (π· Β· πΈ))) < π¦)) |
18 | 3, 6, 8, 10, 2, 5, 12, 17 | rlimcn2 15531 | 1 β’ (π β (π₯ β π΄ β¦ (π΅ Β· πΆ)) βπ (π· Β· πΈ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 βwral 3061 βwrex 3070 class class class wbr 5147 β¦ cmpt 5230 Γ cxp 5673 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 Β· cmul 11111 < clt 11244 β cmin 11440 β+crp 12970 abscabs 15177 βπ crli 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-rlim 15429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |