Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnex | Structured version Visualization version GIF version |
Description: Alias for ax-cnex 10858. See also cnexALT 12655. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
cnex | ⊢ ℂ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnex 10858 | 1 ⊢ ℂ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ℂcc 10800 |
This theorem was proved from axioms: ax-cnex 10858 |
This theorem is referenced by: reex 10893 cnelprrecn 10895 pnfex 10959 nnex 11909 zex 12258 qex 12630 addex 12657 mulex 12658 rlim 15132 rlimf 15138 rlimss 15139 elo12 15164 o1f 15166 o1dm 15167 cnso 15884 cnaddablx 19384 cnaddabl 19385 cnaddid 19386 cnaddinv 19387 cnfldbas 20514 cnfldcj 20517 cnfldds 20520 cnfldfun 20522 cnfldfunALT 20523 cnmsubglem 20573 cnmsgngrp 20696 psgninv 20699 lmbrf 22319 lmfss 22355 lmres 22359 lmcnp 22363 cnmet 23841 cncfval 23957 elcncf 23958 cncfcnvcn 23994 cnheibor 24024 cnlmodlem1 24205 tcphex 24286 tchnmfval 24297 tcphcph 24306 lmmbr2 24328 lmmbrf 24331 iscau2 24346 iscauf 24349 caucfil 24352 cmetcaulem 24357 caussi 24366 causs 24367 lmclimf 24373 mbff 24694 ismbf 24697 ismbfcn 24698 mbfconst 24702 mbfres 24713 mbfimaopn2 24726 cncombf 24727 cnmbf 24728 0plef 24741 0pledm 24742 itg1ge0 24755 mbfi1fseqlem5 24789 itg2addlem 24828 limcfval 24941 limcrcl 24943 ellimc2 24946 limcflf 24950 limcres 24955 limcun 24964 dvfval 24966 dvbss 24970 dvbsss 24971 perfdvf 24972 dvreslem 24978 dvres2lem 24979 dvcnp2 24989 dvnfval 24991 dvnff 24992 dvnf 24996 dvnbss 24997 dvnadd 24998 dvn2bss 24999 dvnres 25000 cpnfval 25001 cpnord 25004 dvaddbr 25007 dvmulbr 25008 dvnfre 25021 dvexp 25022 dvef 25049 c1liplem1 25065 c1lip2 25067 lhop1lem 25082 plyval 25259 elply 25261 elply2 25262 plyf 25264 plyss 25265 elplyr 25267 plyeq0lem 25276 plyeq0 25277 plypf1 25278 plyaddlem1 25279 plymullem1 25280 plyaddlem 25281 plymullem 25282 plysub 25285 coeeulem 25290 coeeq 25293 dgrlem 25295 coeidlem 25303 plyco 25307 coe0 25322 coesub 25323 dgrmulc 25337 dgrsub 25338 dgrcolem1 25339 dgrcolem2 25340 plymul0or 25346 dvnply2 25352 plycpn 25354 plydivlem3 25360 plydivlem4 25361 plydiveu 25363 plyremlem 25369 plyrem 25370 facth 25371 fta1lem 25372 quotcan 25374 vieta1lem2 25376 plyexmo 25378 elqaalem3 25386 qaa 25388 iaa 25390 aannenlem1 25393 aannenlem2 25394 aannenlem3 25395 taylfvallem1 25421 taylfval 25423 tayl0 25426 taylplem1 25427 taylply2 25432 taylply 25433 dvtaylp 25434 dvntaylp 25435 dvntaylp0 25436 taylthlem1 25437 taylthlem2 25438 ulmval 25444 ulmss 25461 ulmcn 25463 mtest 25468 pserulm 25486 psercn 25490 pserdvlem2 25492 abelth 25505 reefgim 25514 cxpcn2 25804 logbmpt 25843 logbfval 25845 lgamgulmlem5 26087 lgamgulmlem6 26088 lgamgulm2 26090 lgamcvglem 26094 ftalem7 26133 dchrfi 26308 cffldtocusgr 27717 isvcOLD 28842 cnaddabloOLD 28844 cnnvg 28941 cnnvs 28943 cnnvnm 28944 cncph 29082 hvmulex 29274 hfsmval 30001 hfmmval 30002 nmfnval 30139 nlfnval 30144 elcnfn 30145 ellnfn 30146 specval 30161 hhcnf 30168 lmlim 31799 esumcvg 31954 plymul02 32425 plymulx0 32426 signsplypnf 32429 signsply0 32430 breprexplemb 32511 breprexpnat 32514 vtsval 32517 circlemethnat 32521 circlevma 32522 circlemethhgt 32523 cvxpconn 33104 fwddifval 34391 fwddifnval 34392 ivthALT 34451 knoppcnlem5 34604 knoppcnlem8 34607 bj-inftyexpiinv 35306 bj-inftyexpidisj 35308 caures 35845 cntotbnd 35881 cnpwstotbnd 35882 rrnval 35912 cnaddcom 36913 elmnc 40877 mpaaeu 40891 itgoval 40902 itgocn 40905 rngunsnply 40914 binomcxplemnotnn0 41863 climexp 43036 xlimbr 43258 fuzxrpmcn 43259 xlimmnfvlem2 43264 xlimpnfvlem2 43268 mulcncff 43301 subcncff 43311 addcncff 43315 cncfuni 43317 divcncff 43322 dvsinax 43344 dvcosax 43357 dvnmptdivc 43369 dvnmptconst 43372 dvnxpaek 43373 dvnmul 43374 dvnprodlem3 43379 etransclem1 43666 etransclem2 43667 etransclem4 43669 etransclem13 43678 etransclem46 43711 fdivpm 45777 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |