MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulex Structured version   Visualization version   GIF version

Theorem mulex 13034
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
mulex · ∈ V

Proof of Theorem mulex
StepHypRef Expression
1 ax-mulf 11236 . 2 · :(ℂ × ℂ)⟶ℂ
2 cnex 11237 . . 3 ℂ ∈ V
32, 2xpex 7774 . 2 (ℂ × ℂ) ∈ V
4 fex2 7959 . 2 (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V)
51, 3, 2, 4mp3an 1462 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3479   × cxp 5682  wf 6556  cc 11154   · cmul 11161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-rn 5695  df-fun 6562  df-fn 6563  df-f 6564
This theorem is referenced by:  cnfldmulOLD  21386  cnfldfunOLD  21392  cnfldfunALTOLD  21393  cnfldfunALTOLDOLD  21394  cnlmod4  25173  cnnvg  30698  cnnvs  30700  cncph  30839
  Copyright terms: Public domain W3C validator