| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulex | Structured version Visualization version GIF version | ||
| Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| mulex | ⊢ · ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 11083 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11084 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7686 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7866 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ · ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 × cxp 5614 ⟶wf 6477 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: cnfldmulOLD 21310 cnfldfunOLD 21316 cnfldfunALTOLD 21317 cnlmod4 25064 cnnvg 30653 cnnvs 30655 cncph 30794 |
| Copyright terms: Public domain | W3C validator |