MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulex Structured version   Visualization version   GIF version

Theorem mulex 12957
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
mulex · ∈ V

Proof of Theorem mulex
StepHypRef Expression
1 ax-mulf 11155 . 2 · :(ℂ × ℂ)⟶ℂ
2 cnex 11156 . . 3 ℂ ∈ V
32, 2xpex 7732 . 2 (ℂ × ℂ) ∈ V
4 fex2 7915 . 2 (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V)
51, 3, 2, 4mp3an 1463 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450   × cxp 5639  wf 6510  cc 11073   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  cnfldmulOLD  21292  cnfldfunOLD  21298  cnfldfunALTOLD  21299  cnlmod4  25046  cnnvg  30614  cnnvs  30616  cncph  30755
  Copyright terms: Public domain W3C validator