| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulex | Structured version Visualization version GIF version | ||
| Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| mulex | ⊢ · ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 11236 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11237 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7774 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7959 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1462 | 1 ⊢ · ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3479 × cxp 5682 ⟶wf 6556 ℂcc 11154 · cmul 11161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-mulf 11236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-fun 6562 df-fn 6563 df-f 6564 |
| This theorem is referenced by: cnfldmulOLD 21386 cnfldfunOLD 21392 cnfldfunALTOLD 21393 cnfldfunALTOLDOLD 21394 cnlmod4 25173 cnnvg 30698 cnnvs 30700 cncph 30839 |
| Copyright terms: Public domain | W3C validator |