| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulex | Structured version Visualization version GIF version | ||
| Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| mulex | ⊢ · ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 11093 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11094 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7692 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7872 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ · ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 × cxp 5617 ⟶wf 6482 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: cnfldmulOLD 21314 cnfldfunOLD 21320 cnfldfunALTOLD 21321 cnlmod4 25067 cnnvg 30660 cnnvs 30662 cncph 30801 |
| Copyright terms: Public domain | W3C validator |