MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulex Structured version   Visualization version   GIF version

Theorem mulex 12609
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
mulex · ∈ V

Proof of Theorem mulex
StepHypRef Expression
1 ax-mulf 10833 . 2 · :(ℂ × ℂ)⟶ℂ
2 cnex 10834 . . 3 ℂ ∈ V
32, 2xpex 7556 . 2 (ℂ × ℂ) ∈ V
4 fex2 7729 . 2 (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V)
51, 3, 2, 4mp3an 1463 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3420   × cxp 5563  wf 6393  cc 10751   · cmul 10758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-mulf 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-br 5068  df-opab 5130  df-xp 5571  df-rel 5572  df-cnv 5573  df-dm 5575  df-rn 5576  df-fun 6399  df-fn 6400  df-f 6401
This theorem is referenced by:  cnfldmul  20393  cnfldfun  20399  cnfldfunALT  20400  cnlmod4  24060  cnnvg  28783  cnnvs  28785  cncph  28924
  Copyright terms: Public domain W3C validator