Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulex | Structured version Visualization version GIF version |
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
mulex | ⊢ · ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulf 10833 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
2 | cnex 10834 | . . 3 ⊢ ℂ ∈ V | |
3 | 2, 2 | xpex 7556 | . 2 ⊢ (ℂ × ℂ) ∈ V |
4 | fex2 7729 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ · ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3420 × cxp 5563 ⟶wf 6393 ℂcc 10751 · cmul 10758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-mulf 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-opab 5130 df-xp 5571 df-rel 5572 df-cnv 5573 df-dm 5575 df-rn 5576 df-fun 6399 df-fn 6400 df-f 6401 |
This theorem is referenced by: cnfldmul 20393 cnfldfun 20399 cnfldfunALT 20400 cnlmod4 24060 cnnvg 28783 cnnvs 28785 cncph 28924 |
Copyright terms: Public domain | W3C validator |