| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulex | Structured version Visualization version GIF version | ||
| Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| mulex | ⊢ · ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 11148 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11149 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7729 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7912 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ · ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 × cxp 5636 ⟶wf 6507 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: cnfldmulOLD 21285 cnfldfunOLD 21291 cnfldfunALTOLD 21292 cnlmod4 25039 cnnvg 30607 cnnvs 30609 cncph 30748 |
| Copyright terms: Public domain | W3C validator |