MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnzcnf Structured version   Visualization version   GIF version

Theorem mulnzcnf 11800
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.)
Assertion
Ref Expression
mulnzcnf ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})

Proof of Theorem mulnzcnf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-mulf 11124 . . . . 5 · :(ℂ × ℂ)⟶ℂ
2 ffnov 7495 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ ↔ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ))
31, 2mpbi 230 . . . 4 ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ)
43simpli 483 . . 3 · Fn (ℂ × ℂ)
5 difss 4095 . . . 4 (ℂ ∖ {0}) ⊆ ℂ
6 xpss12 5646 . . . 4 (((ℂ ∖ {0}) ⊆ ℂ ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ))
75, 5, 6mp2an 692 . . 3 ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)
8 fnssres 6623 . . 3 (( · Fn (ℂ × ℂ) ∧ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) → ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})))
94, 7, 8mp2an 692 . 2 ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))
10 ovres 7535 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (𝑥 · 𝑦))
11 eldifsn 4746 . . . . . 6 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
12 eldifsn 4746 . . . . . 6 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
13 mulcl 11128 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1413ad2ant2r 747 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ)
15 mulne0 11796 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
1614, 15jca 511 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
1711, 12, 16syl2anb 598 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
18 eldifsn 4746 . . . . 5 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
1917, 18sylibr 234 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
2010, 19eqeltrd 2828 . . 3 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}))
2120rgen2 3175 . 2 𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})
22 ffnov 7495 . 2 (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})))
239, 21, 22mpbir2an 711 1 ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wne 2925  wral 3044  cdif 3908  wss 3911  {csn 4585   × cxp 5629  cres 5633   Fn wfn 6494  wf 6495  (class class class)co 7369  cc 11042  0cc0 11044   · cmul 11049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator