MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnzcnf Structured version   Visualization version   GIF version

Theorem mulnzcnf 11910
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.)
Assertion
Ref Expression
mulnzcnf ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})

Proof of Theorem mulnzcnf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-mulf 11236 . . . . 5 · :(ℂ × ℂ)⟶ℂ
2 ffnov 7560 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ ↔ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ))
31, 2mpbi 230 . . . 4 ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ)
43simpli 483 . . 3 · Fn (ℂ × ℂ)
5 difss 4135 . . . 4 (ℂ ∖ {0}) ⊆ ℂ
6 xpss12 5699 . . . 4 (((ℂ ∖ {0}) ⊆ ℂ ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ))
75, 5, 6mp2an 692 . . 3 ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)
8 fnssres 6690 . . 3 (( · Fn (ℂ × ℂ) ∧ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) → ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})))
94, 7, 8mp2an 692 . 2 ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))
10 ovres 7600 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (𝑥 · 𝑦))
11 eldifsn 4785 . . . . . 6 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
12 eldifsn 4785 . . . . . 6 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
13 mulcl 11240 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1413ad2ant2r 747 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ)
15 mulne0 11906 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
1614, 15jca 511 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
1711, 12, 16syl2anb 598 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
18 eldifsn 4785 . . . . 5 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
1917, 18sylibr 234 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
2010, 19eqeltrd 2840 . . 3 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}))
2120rgen2 3198 . 2 𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})
22 ffnov 7560 . 2 (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})))
239, 21, 22mpbir2an 711 1 ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  wne 2939  wral 3060  cdif 3947  wss 3950  {csn 4625   × cxp 5682  cres 5686   Fn wfn 6555  wf 6556  (class class class)co 7432  cc 11154  0cc0 11156   · cmul 11161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator