MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcnfldOLD Structured version   Visualization version   GIF version

Theorem dfcnfldOLD 21295
Description: Obsolete version of df-cnfld 21280 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfcnfldOLD fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))

Proof of Theorem dfcnfldOLD
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 21280 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 eqidd 2730 . . . . . 6 (⊤ → ⟨(Base‘ndx), ℂ⟩ = ⟨(Base‘ndx), ℂ⟩)
3 ax-addf 11107 . . . . . . . . . . 11 + :(ℂ × ℂ)⟶ℂ
4 ffn 6656 . . . . . . . . . . 11 ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ))
53, 4ax-mp 5 . . . . . . . . . 10 + Fn (ℂ × ℂ)
6 fnov 7484 . . . . . . . . . 10 ( + Fn (ℂ × ℂ) ↔ + = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)))
75, 6mpbi 230 . . . . . . . . 9 + = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))
8 eqcom 2736 . . . . . . . . 9 ( + = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ↔ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) = + )
97, 8mpbi 230 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) = +
109opeq2i 4831 . . . . . . 7 ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ = ⟨(+g‘ndx), + ⟩
1110a1i 11 . . . . . 6 (⊤ → ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ = ⟨(+g‘ndx), + ⟩)
12 ax-mulf 11108 . . . . . . . . . . 11 · :(ℂ × ℂ)⟶ℂ
13 ffn 6656 . . . . . . . . . . 11 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
1412, 13ax-mp 5 . . . . . . . . . 10 · Fn (ℂ × ℂ)
15 fnov 7484 . . . . . . . . . 10 ( · Fn (ℂ × ℂ) ↔ · = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)))
1614, 15mpbi 230 . . . . . . . . 9 · = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
17 eqcom 2736 . . . . . . . . 9 ( · = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ↔ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = · )
1816, 17mpbi 230 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = ·
1918opeq2i 4831 . . . . . . 7 ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩ = ⟨(.r‘ndx), · ⟩
2019a1i 11 . . . . . 6 (⊤ → ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩ = ⟨(.r‘ndx), · ⟩)
212, 11, 20tpeq123d 4702 . . . . 5 (⊤ → {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
2221mptru 1547 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
2322uneq1i 4117 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
2423uneq1i 4117 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
251, 24eqtri 2752 1 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  cun 3903  {csn 4579  {ctp 4583  cop 4585   × cxp 5621  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026   + caddc 11031   · cmul 11033  cle 11169  cmin 11365  ccj 15021  abscabs 15159  ndxcnx 17122  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  *𝑟cstv 17181  TopSetcts 17185  lecple 17186  distcds 17188  UnifSetcunif 17189  MetOpencmopn 21269  metUnifcmetu 21270  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-cnfld 21280
This theorem is referenced by:  cnfldstrOLD  21296  cnfldbasOLD  21298  cnfldaddOLD  21299  cnfldmulOLD  21300  cnfldcjOLD  21301  cnfldtsetOLD  21302  cnfldleOLD  21303  cnflddsOLD  21304  cnfldunifOLD  21305  cnfldfunOLD  21306  cnfldfunALTOLD  21307  cffldtocusgrOLD  29411
  Copyright terms: Public domain W3C validator