| Step | Hyp | Ref
| Expression |
| 1 | | df-cnfld 21365 |
. 2
⊢
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
| 2 | | eqidd 2738 |
. . . . . 6
⊢ (⊤
→ 〈(Base‘ndx), ℂ〉 = 〈(Base‘ndx),
ℂ〉) |
| 3 | | ax-addf 11234 |
. . . . . . . . . . 11
⊢ +
:(ℂ × ℂ)⟶ℂ |
| 4 | | ffn 6736 |
. . . . . . . . . . 11
⊢ ( +
:(ℂ × ℂ)⟶ℂ → + Fn (ℂ ×
ℂ)) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . 10
⊢ + Fn
(ℂ × ℂ) |
| 6 | | fnov 7564 |
. . . . . . . . . 10
⊢ ( + Fn
(ℂ × ℂ) ↔ + = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))) |
| 7 | 5, 6 | mpbi 230 |
. . . . . . . . 9
⊢ + =
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) |
| 8 | | eqcom 2744 |
. . . . . . . . 9
⊢ ( + =
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ↔ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) = + ) |
| 9 | 7, 8 | mpbi 230 |
. . . . . . . 8
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) = + |
| 10 | 9 | opeq2i 4877 |
. . . . . . 7
⊢
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 = 〈(+g‘ndx), +
〉 |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 = 〈(+g‘ndx), +
〉) |
| 12 | | ax-mulf 11235 |
. . . . . . . . . . 11
⊢ ·
:(ℂ × ℂ)⟶ℂ |
| 13 | | ffn 6736 |
. . . . . . . . . . 11
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . 10
⊢ ·
Fn (ℂ × ℂ) |
| 15 | | fnov 7564 |
. . . . . . . . . 10
⊢ (
· Fn (ℂ × ℂ) ↔ · = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))) |
| 16 | 14, 15 | mpbi 230 |
. . . . . . . . 9
⊢ ·
= (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) |
| 17 | | eqcom 2744 |
. . . . . . . . 9
⊢ (
· = (𝑢 ∈
ℂ, 𝑣 ∈ ℂ
↦ (𝑢 · 𝑣)) ↔ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = · ) |
| 18 | 16, 17 | mpbi 230 |
. . . . . . . 8
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = · |
| 19 | 18 | opeq2i 4877 |
. . . . . . 7
⊢
〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉 = 〈(.r‘ndx),
· 〉 |
| 20 | 19 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉 = 〈(.r‘ndx),
· 〉) |
| 21 | 2, 11, 20 | tpeq123d 4748 |
. . . . 5
⊢ (⊤
→ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} = {〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉}) |
| 22 | 21 | mptru 1547 |
. . . 4
⊢
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} = {〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} |
| 23 | 22 | uneq1i 4164 |
. . 3
⊢
({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) =
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) |
| 24 | 23 | uneq1i 4164 |
. 2
⊢
(({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
| 25 | 1, 24 | eqtri 2765 |
1
⊢
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |