| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 14014 |
. . . 4
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 2 | | dvdsmulf1o.x |
. . . . 5
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
| 3 | | dvdsmulf1o.1 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | | dvdsssfz1 16355 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ (1...𝑀)) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ (1...𝑀)) |
| 6 | 2, 5 | eqsstrid 4022 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ (1...𝑀)) |
| 7 | 1, 6 | ssfid 9301 |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 8 | | fzfid 14014 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 9 | | dvdsmulf1o.y |
. . . . . 6
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| 10 | | dvdsmulf1o.2 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 11 | | dvdsssfz1 16355 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) |
| 12 | 10, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) |
| 13 | 9, 12 | eqsstrid 4022 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ (1...𝑁)) |
| 14 | 8, 13 | ssfid 9301 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 15 | | fsumdvdsmulOLD.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) |
| 16 | 14, 15 | fsumcl 15769 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝑌 𝐵 ∈ ℂ) |
| 17 | | fsumdvdsmulOLD.4 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 18 | 7, 16, 17 | fsummulc1 15821 |
. 2
⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑗 ∈ 𝑋 (𝐴 · Σ𝑘 ∈ 𝑌 𝐵)) |
| 19 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑌 ∈ Fin) |
| 20 | 15 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) |
| 21 | 19, 17, 20 | fsummulc2 15820 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑘 ∈ 𝑌 (𝐴 · 𝐵)) |
| 22 | | fsumdvdsmulOLD.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) = 𝐷) |
| 23 | 22 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → (𝐴 · 𝐵) = 𝐷) |
| 24 | 23 | sumeq2dv 15738 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → Σ𝑘 ∈ 𝑌 (𝐴 · 𝐵) = Σ𝑘 ∈ 𝑌 𝐷) |
| 25 | 21, 24 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑘 ∈ 𝑌 𝐷) |
| 26 | 25 | sumeq2dv 15738 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷) |
| 27 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ( · ‘𝑧) = ( ·
‘〈𝑗, 𝑘〉)) |
| 28 | | df-ov 7434 |
. . . . . . 7
⊢ (𝑗 · 𝑘) = ( · ‘〈𝑗, 𝑘〉) |
| 29 | 27, 28 | eqtr4di 2795 |
. . . . . 6
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ( · ‘𝑧) = (𝑗 · 𝑘)) |
| 30 | 29 | csbeq1d 3903 |
. . . . 5
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
| 31 | | ovex 7464 |
. . . . . 6
⊢ (𝑗 · 𝑘) ∈ V |
| 32 | | fsumdvdsmulOLD.7 |
. . . . . 6
⊢ (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷) |
| 33 | 31, 32 | csbie 3934 |
. . . . 5
⊢
⦋(𝑗
· 𝑘) / 𝑖⦌𝐶 = 𝐷 |
| 34 | 30, 33 | eqtrdi 2793 |
. . . 4
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = 𝐷) |
| 35 | 17 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐴 ∈ ℂ) |
| 36 | 15 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐵 ∈ ℂ) |
| 37 | 35, 36 | mulcld 11281 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) ∈ ℂ) |
| 38 | 22, 37 | eqeltrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐷 ∈ ℂ) |
| 39 | 34, 7, 14, 38 | fsumxp 15808 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 40 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑖 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑖⦌𝐶) |
| 41 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑤𝐶 |
| 42 | | nfcsb1v 3923 |
. . . . 5
⊢
Ⅎ𝑖⦋𝑤 / 𝑖⦌𝐶 |
| 43 | 40, 41, 42 | cbvsum 15731 |
. . . 4
⊢
Σ𝑖 ∈
𝑍 𝐶 = Σ𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 |
| 44 | | csbeq1 3902 |
. . . . 5
⊢ (𝑤 = ( · ‘𝑧) → ⦋𝑤 / 𝑖⦌𝐶 = ⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 45 | | xpfi 9358 |
. . . . . 6
⊢ ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin) |
| 46 | 7, 14, 45 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) ∈ Fin) |
| 47 | | dvdsmulf1o.3 |
. . . . . 6
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 48 | | dvdsmulf1o.z |
. . . . . 6
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
| 49 | 3, 10, 47, 2, 9, 48 | dvdsmulf1o 27239 |
. . . . 5
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |
| 50 | | fvres 6925 |
. . . . . 6
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧)) |
| 51 | 50 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧)) |
| 52 | 38 | ralrimivva 3202 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ 𝑋 ∀𝑘 ∈ 𝑌 𝐷 ∈ ℂ) |
| 53 | 34 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑗, 𝑘〉 → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
| 54 | 53 | ralxp 5852 |
. . . . . . . 8
⊢
(∀𝑧 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑗 ∈ 𝑋 ∀𝑘 ∈ 𝑌 𝐷 ∈ ℂ) |
| 55 | 52, 54 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
| 56 | | ax-mulf 11235 |
. . . . . . . . . 10
⊢ ·
:(ℂ × ℂ)⟶ℂ |
| 57 | | ffn 6736 |
. . . . . . . . . 10
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
⊢ ·
Fn (ℂ × ℂ) |
| 59 | 2 | ssrab3 4082 |
. . . . . . . . . . 11
⊢ 𝑋 ⊆
ℕ |
| 60 | | nnsscn 12271 |
. . . . . . . . . . 11
⊢ ℕ
⊆ ℂ |
| 61 | 59, 60 | sstri 3993 |
. . . . . . . . . 10
⊢ 𝑋 ⊆
ℂ |
| 62 | 9 | ssrab3 4082 |
. . . . . . . . . . 11
⊢ 𝑌 ⊆
ℕ |
| 63 | 62, 60 | sstri 3993 |
. . . . . . . . . 10
⊢ 𝑌 ⊆
ℂ |
| 64 | | xpss12 5700 |
. . . . . . . . . 10
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
| 65 | 61, 63, 64 | mp2an 692 |
. . . . . . . . 9
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
| 66 | 44 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑤 = ( · ‘𝑧) → (⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ⦋(
· ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
| 67 | 66 | ralima 7257 |
. . . . . . . . 9
⊢ ((
· Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
(∀𝑤 ∈ (
· “ (𝑋 ×
𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
| 68 | 58, 65, 67 | mp2an 692 |
. . . . . . . 8
⊢
(∀𝑤 ∈ (
· “ (𝑋 ×
𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
| 69 | | df-ima 5698 |
. . . . . . . . . 10
⊢ (
· “ (𝑋 ×
𝑌)) = ran ( ·
↾ (𝑋 × 𝑌)) |
| 70 | | f1ofo 6855 |
. . . . . . . . . . 11
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 → ( · ↾
(𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
| 71 | | forn 6823 |
. . . . . . . . . . 11
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–onto→𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍) |
| 72 | 49, 70, 71 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran ( · ↾
(𝑋 × 𝑌)) = 𝑍) |
| 73 | 69, 72 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍) |
| 74 | 73 | raleqdv 3326 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑤 ∈ ( · “
(𝑋 × 𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ)) |
| 75 | 68, 74 | bitr3id 285 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ)) |
| 76 | 55, 75 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ) |
| 77 | 76 | r19.21bi 3251 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ) |
| 78 | 44, 46, 49, 51, 77 | fsumf1o 15759 |
. . . 4
⊢ (𝜑 → Σ𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 79 | 43, 78 | eqtrid 2789 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ 𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 80 | 39, 79 | eqtr4d 2780 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑖 ∈ 𝑍 𝐶) |
| 81 | 18, 26, 80 | 3eqtrd 2781 |
1
⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑖 ∈ 𝑍 𝐶) |