Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0pluscn Structured version   Visualization version   GIF version

Theorem xrge0pluscn 31792
Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0pluscn.1 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
Assertion
Ref Expression
xrge0pluscn + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   + (𝑥)   𝐽(𝑥)

Proof of Theorem xrge0pluscn
Dummy variables 𝑦 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 xrge0iifhmeo.k . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2xrge0iifhmeo 31788 . 2 𝐹 ∈ (IIHomeo𝐽)
4 unitsscn 13161 . . . . 5 (0[,]1) ⊆ ℂ
5 xpss12 5595 . . . . 5 (((0[,]1) ⊆ ℂ ∧ (0[,]1) ⊆ ℂ) → ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
64, 4, 5mp2an 688 . . . 4 ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)
7 ax-mulf 10882 . . . . 5 · :(ℂ × ℂ)⟶ℂ
8 ffn 6584 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
9 fnssresb 6538 . . . . 5 ( · Fn (ℂ × ℂ) → (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)))
107, 8, 9mp2b 10 . . . 4 (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
116, 10mpbir 230 . . 3 ( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1))
12 ovres 7416 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) = (𝑢 · 𝑣))
13 iimulcl 24006 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) ∈ (0[,]1))
1412, 13eqeltrd 2839 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1))
1514rgen2 3126 . . 3 𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)
16 ffnov 7379 . . 3 (( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1) ↔ (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ∧ ∀𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)))
1711, 15, 16mpbir2an 707 . 2 ( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1)
18 iccssxr 13091 . . . . . 6 (0[,]+∞) ⊆ ℝ*
19 xpss12 5595 . . . . . 6 (((0[,]+∞) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2018, 18, 19mp2an 688 . . . . 5 ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)
21 xaddf 12887 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
22 ffn 6584 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
23 fnssresb 6538 . . . . . 6 ( +𝑒 Fn (ℝ* × ℝ*) → (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)))
2421, 22, 23mp2b 10 . . . . 5 (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2520, 24mpbir 230 . . . 4 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞))
26 xrge0pluscn.1 . . . . 5 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2726fneq1i 6514 . . . 4 ( + Fn ((0[,]+∞) × (0[,]+∞)) ↔ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)))
2825, 27mpbir 230 . . 3 + Fn ((0[,]+∞) × (0[,]+∞))
2926oveqi 7268 . . . . 5 (𝑎 + 𝑏) = (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏)
30 ovres 7416 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) = (𝑎 +𝑒 𝑏))
31 ge0xaddcl 13123 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 +𝑒 𝑏) ∈ (0[,]+∞))
3230, 31eqeltrd 2839 . . . . 5 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) ∈ (0[,]+∞))
3329, 32eqeltrid 2843 . . . 4 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 + 𝑏) ∈ (0[,]+∞))
3433rgen2 3126 . . 3 𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)
35 ffnov 7379 . . 3 ( + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) ↔ ( + Fn ((0[,]+∞) × (0[,]+∞)) ∧ ∀𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)))
3628, 34, 35mpbir2an 707 . 2 + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞)
37 iitopon 23948 . 2 II ∈ (TopOn‘(0[,]1))
38 letopon 22264 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
39 resttopon 22220 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
4038, 18, 39mp2an 688 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
412, 40eqeltri 2835 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
4226oveqi 7268 . . . 4 ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣))
431xrge0iifcnv 31785 . . . . . . . 8 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
4443simpli 483 . . . . . . 7 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
45 f1of 6700 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
4644, 45ax-mp 5 . . . . . 6 𝐹:(0[,]1)⟶(0[,]+∞)
4746ffvelrni 6942 . . . . 5 (𝑢 ∈ (0[,]1) → (𝐹𝑢) ∈ (0[,]+∞))
4846ffvelrni 6942 . . . . 5 (𝑣 ∈ (0[,]1) → (𝐹𝑣) ∈ (0[,]+∞))
49 ovres 7416 . . . . 5 (((𝐹𝑢) ∈ (0[,]+∞) ∧ (𝐹𝑣) ∈ (0[,]+∞)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5047, 48, 49syl2an 595 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5142, 50syl5eq 2791 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
521, 2xrge0iifhom 31789 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5312eqcomd 2744 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) = (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣))
5453fveq2d 6760 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)))
5551, 52, 543eqtr2rd 2785 . 2 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)) = ((𝐹𝑢) + (𝐹𝑣)))
56 eqid 2738 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
5756iistmd 31754 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
58 cnfldex 20513 . . . . . 6 fld ∈ V
59 ovex 7288 . . . . . 6 (0[,]1) ∈ V
60 eqid 2738 . . . . . . 7 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
61 eqid 2738 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
6260, 61mgpress 19650 . . . . . 6 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
6358, 59, 62mp2an 688 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
6460dfii4 23953 . . . . 5 II = (TopOpen‘(ℂflds (0[,]1)))
6563, 64mgptopn 19647 . . . 4 II = (TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))
66 cnfldbas 20514 . . . . . . 7 ℂ = (Base‘ℂfld)
6761, 66mgpbas 19641 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
68 cnfldmul 20516 . . . . . . 7 · = (.r‘ℂfld)
6961, 68mgpplusg 19639 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
707, 8ax-mp 5 . . . . . 6 · Fn (ℂ × ℂ)
7167, 56, 69, 70, 4ressplusf 31137 . . . . 5 (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1))) = ( · ↾ ((0[,]1) × (0[,]1)))
7271eqcomi 2747 . . . 4 ( · ↾ ((0[,]1) × (0[,]1))) = (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1)))
7365, 72tmdcn 23142 . . 3 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II))
7457, 73ax-mp 5 . 2 ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II)
753, 17, 36, 37, 41, 55, 74mndpluscn 31778 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  ifcif 4456  cmpt 5153   × cxp 5578  ccnv 5579  cres 5582   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941  -cneg 11136   +𝑒 cxad 12775  [,]cicc 13011  expce 15699  s cress 16867  t crest 17048  ordTopcordt 17127  +𝑓cplusf 18238  mulGrpcmgp 19635  fldccnfld 20510  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  TopMndctmd 23129  IIcii 23944  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  xrge0tmdALT  31798
  Copyright terms: Public domain W3C validator