Step | Hyp | Ref
| Expression |
1 | | xrge0iifhmeo.1 |
. . 3
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
2 | | xrge0iifhmeo.k |
. . 3
⊢ 𝐽 = ((ordTop‘ ≤ )
↾t (0[,]+∞)) |
3 | 1, 2 | xrge0iifhmeo 31788 |
. 2
⊢ 𝐹 ∈ (IIHomeo𝐽) |
4 | | unitsscn 13161 |
. . . . 5
⊢ (0[,]1)
⊆ ℂ |
5 | | xpss12 5595 |
. . . . 5
⊢ (((0[,]1)
⊆ ℂ ∧ (0[,]1) ⊆ ℂ) → ((0[,]1) × (0[,]1))
⊆ (ℂ × ℂ)) |
6 | 4, 4, 5 | mp2an 688 |
. . . 4
⊢ ((0[,]1)
× (0[,]1)) ⊆ (ℂ × ℂ) |
7 | | ax-mulf 10882 |
. . . . 5
⊢ ·
:(ℂ × ℂ)⟶ℂ |
8 | | ffn 6584 |
. . . . 5
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
9 | | fnssresb 6538 |
. . . . 5
⊢ (
· Fn (ℂ × ℂ) → (( · ↾ ((0[,]1)
× (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1))
⊆ (ℂ × ℂ))) |
10 | 7, 8, 9 | mp2b 10 |
. . . 4
⊢ ((
· ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔
((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)) |
11 | 6, 10 | mpbir 230 |
. . 3
⊢ (
· ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) ×
(0[,]1)) |
12 | | ovres 7416 |
. . . . 5
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1)
× (0[,]1)))𝑣) =
(𝑢 · 𝑣)) |
13 | | iimulcl 24006 |
. . . . 5
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) ∈ (0[,]1)) |
14 | 12, 13 | eqeltrd 2839 |
. . . 4
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1)
× (0[,]1)))𝑣) ∈
(0[,]1)) |
15 | 14 | rgen2 3126 |
. . 3
⊢
∀𝑢 ∈
(0[,]1)∀𝑣 ∈
(0[,]1)(𝑢( · ↾
((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1) |
16 | | ffnov 7379 |
. . 3
⊢ ((
· ↾ ((0[,]1) × (0[,]1))):((0[,]1) ×
(0[,]1))⟶(0[,]1) ↔ (( · ↾ ((0[,]1) × (0[,]1)))
Fn ((0[,]1) × (0[,]1)) ∧ ∀𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) ×
(0[,]1)))𝑣) ∈
(0[,]1))) |
17 | 11, 15, 16 | mpbir2an 707 |
. 2
⊢ (
· ↾ ((0[,]1) × (0[,]1))):((0[,]1) ×
(0[,]1))⟶(0[,]1) |
18 | | iccssxr 13091 |
. . . . . 6
⊢
(0[,]+∞) ⊆ ℝ* |
19 | | xpss12 5595 |
. . . . . 6
⊢
(((0[,]+∞) ⊆ ℝ* ∧ (0[,]+∞)
⊆ ℝ*) → ((0[,]+∞) × (0[,]+∞))
⊆ (ℝ* × ℝ*)) |
20 | 18, 18, 19 | mp2an 688 |
. . . . 5
⊢
((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ*
× ℝ*) |
21 | | xaddf 12887 |
. . . . . 6
⊢
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ* |
22 | | ffn 6584 |
. . . . . 6
⊢ (
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ* → +𝑒 Fn
(ℝ* × ℝ*)) |
23 | | fnssresb 6538 |
. . . . . 6
⊢ (
+𝑒 Fn (ℝ* × ℝ*)
→ (( +𝑒 ↾ ((0[,]+∞) ×
(0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔
((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* ×
ℝ*))) |
24 | 21, 22, 23 | mp2b 10 |
. . . . 5
⊢ ((
+𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn
((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) ×
(0[,]+∞)) ⊆ (ℝ* ×
ℝ*)) |
25 | 20, 24 | mpbir 230 |
. . . 4
⊢ (
+𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn
((0[,]+∞) × (0[,]+∞)) |
26 | | xrge0pluscn.1 |
. . . . 5
⊢ + = (
+𝑒 ↾ ((0[,]+∞) ×
(0[,]+∞))) |
27 | 26 | fneq1i 6514 |
. . . 4
⊢ ( + Fn
((0[,]+∞) × (0[,]+∞)) ↔ ( +𝑒 ↾
((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) ×
(0[,]+∞))) |
28 | 25, 27 | mpbir 230 |
. . 3
⊢ + Fn
((0[,]+∞) × (0[,]+∞)) |
29 | 26 | oveqi 7268 |
. . . . 5
⊢ (𝑎 + 𝑏) = (𝑎( +𝑒 ↾
((0[,]+∞) × (0[,]+∞)))𝑏) |
30 | | ovres 7416 |
. . . . . 6
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ (𝑎(
+𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) = (𝑎 +𝑒 𝑏)) |
31 | | ge0xaddcl 13123 |
. . . . . 6
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ (𝑎
+𝑒 𝑏)
∈ (0[,]+∞)) |
32 | 30, 31 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ (𝑎(
+𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) ∈
(0[,]+∞)) |
33 | 29, 32 | eqeltrid 2843 |
. . . 4
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ (𝑎 + 𝑏) ∈
(0[,]+∞)) |
34 | 33 | rgen2 3126 |
. . 3
⊢
∀𝑎 ∈
(0[,]+∞)∀𝑏
∈ (0[,]+∞)(𝑎
+ 𝑏) ∈
(0[,]+∞) |
35 | | ffnov 7379 |
. . 3
⊢ ( +
:((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) ↔ ( + Fn
((0[,]+∞) × (0[,]+∞)) ∧ ∀𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞))) |
36 | 28, 34, 35 | mpbir2an 707 |
. 2
⊢ +
:((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) |
37 | | iitopon 23948 |
. 2
⊢ II ∈
(TopOn‘(0[,]1)) |
38 | | letopon 22264 |
. . . 4
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘ℝ*) |
39 | | resttopon 22220 |
. . . 4
⊢
(((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧
(0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ )
↾t (0[,]+∞)) ∈
(TopOn‘(0[,]+∞))) |
40 | 38, 18, 39 | mp2an 688 |
. . 3
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈
(TopOn‘(0[,]+∞)) |
41 | 2, 40 | eqeltri 2835 |
. 2
⊢ 𝐽 ∈
(TopOn‘(0[,]+∞)) |
42 | 26 | oveqi 7268 |
. . . 4
⊢ ((𝐹‘𝑢) + (𝐹‘𝑣)) = ((𝐹‘𝑢)( +𝑒 ↾
((0[,]+∞) × (0[,]+∞)))(𝐹‘𝑣)) |
43 | 1 | xrge0iifcnv 31785 |
. . . . . . . 8
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0,
(exp‘-𝑦)))) |
44 | 43 | simpli 483 |
. . . . . . 7
⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
45 | | f1of 6700 |
. . . . . . 7
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) |
46 | 44, 45 | ax-mp 5 |
. . . . . 6
⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
47 | 46 | ffvelrni 6942 |
. . . . 5
⊢ (𝑢 ∈ (0[,]1) → (𝐹‘𝑢) ∈ (0[,]+∞)) |
48 | 46 | ffvelrni 6942 |
. . . . 5
⊢ (𝑣 ∈ (0[,]1) → (𝐹‘𝑣) ∈ (0[,]+∞)) |
49 | | ovres 7416 |
. . . . 5
⊢ (((𝐹‘𝑢) ∈ (0[,]+∞) ∧ (𝐹‘𝑣) ∈ (0[,]+∞)) → ((𝐹‘𝑢)( +𝑒 ↾
((0[,]+∞) × (0[,]+∞)))(𝐹‘𝑣)) = ((𝐹‘𝑢) +𝑒 (𝐹‘𝑣))) |
50 | 47, 48, 49 | syl2an 595 |
. . . 4
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘𝑢)( +𝑒 ↾
((0[,]+∞) × (0[,]+∞)))(𝐹‘𝑣)) = ((𝐹‘𝑢) +𝑒 (𝐹‘𝑣))) |
51 | 42, 50 | syl5eq 2791 |
. . 3
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘𝑢) + (𝐹‘𝑣)) = ((𝐹‘𝑢) +𝑒 (𝐹‘𝑣))) |
52 | 1, 2 | xrge0iifhom 31789 |
. . 3
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = ((𝐹‘𝑢) +𝑒 (𝐹‘𝑣))) |
53 | 12 | eqcomd 2744 |
. . . 4
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) = (𝑢( · ↾ ((0[,]1) ×
(0[,]1)))𝑣)) |
54 | 53 | fveq2d 6760 |
. . 3
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = (𝐹‘(𝑢( · ↾ ((0[,]1) ×
(0[,]1)))𝑣))) |
55 | 51, 52, 54 | 3eqtr2rd 2785 |
. 2
⊢ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢( · ↾ ((0[,]1) ×
(0[,]1)))𝑣)) = ((𝐹‘𝑢) + (𝐹‘𝑣))) |
56 | | eqid 2738 |
. . . 4
⊢
((mulGrp‘ℂfld) ↾s (0[,]1)) =
((mulGrp‘ℂfld) ↾s
(0[,]1)) |
57 | 56 | iistmd 31754 |
. . 3
⊢
((mulGrp‘ℂfld) ↾s (0[,]1))
∈ TopMnd |
58 | | cnfldex 20513 |
. . . . . 6
⊢
ℂfld ∈ V |
59 | | ovex 7288 |
. . . . . 6
⊢ (0[,]1)
∈ V |
60 | | eqid 2738 |
. . . . . . 7
⊢
(ℂfld ↾s (0[,]1)) =
(ℂfld ↾s (0[,]1)) |
61 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
62 | 60, 61 | mgpress 19650 |
. . . . . 6
⊢
((ℂfld ∈ V ∧ (0[,]1) ∈ V) →
((mulGrp‘ℂfld) ↾s (0[,]1)) =
(mulGrp‘(ℂfld ↾s
(0[,]1)))) |
63 | 58, 59, 62 | mp2an 688 |
. . . . 5
⊢
((mulGrp‘ℂfld) ↾s (0[,]1)) =
(mulGrp‘(ℂfld ↾s
(0[,]1))) |
64 | 60 | dfii4 23953 |
. . . . 5
⊢ II =
(TopOpen‘(ℂfld ↾s
(0[,]1))) |
65 | 63, 64 | mgptopn 19647 |
. . . 4
⊢ II =
(TopOpen‘((mulGrp‘ℂfld) ↾s
(0[,]1))) |
66 | | cnfldbas 20514 |
. . . . . . 7
⊢ ℂ =
(Base‘ℂfld) |
67 | 61, 66 | mgpbas 19641 |
. . . . . 6
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
68 | | cnfldmul 20516 |
. . . . . . 7
⊢ ·
= (.r‘ℂfld) |
69 | 61, 68 | mgpplusg 19639 |
. . . . . 6
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
70 | 7, 8 | ax-mp 5 |
. . . . . 6
⊢ ·
Fn (ℂ × ℂ) |
71 | 67, 56, 69, 70, 4 | ressplusf 31137 |
. . . . 5
⊢
(+𝑓‘((mulGrp‘ℂfld)
↾s (0[,]1))) = ( · ↾ ((0[,]1) ×
(0[,]1))) |
72 | 71 | eqcomi 2747 |
. . . 4
⊢ (
· ↾ ((0[,]1) × (0[,]1))) =
(+𝑓‘((mulGrp‘ℂfld)
↾s (0[,]1))) |
73 | 65, 72 | tmdcn 23142 |
. . 3
⊢
(((mulGrp‘ℂfld) ↾s (0[,]1))
∈ TopMnd → ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II
×t II) Cn II)) |
74 | 57, 73 | ax-mp 5 |
. 2
⊢ (
· ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II)
Cn II) |
75 | 3, 17, 36, 37, 41, 55, 74 | mndpluscn 31778 |
1
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |