Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0pluscn Structured version   Visualization version   GIF version

Theorem xrge0pluscn 31187
Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0pluscn.1 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
Assertion
Ref Expression
xrge0pluscn + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   + (𝑥)   𝐽(𝑥)

Proof of Theorem xrge0pluscn
Dummy variables 𝑦 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 xrge0iifhmeo.k . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2xrge0iifhmeo 31183 . 2 𝐹 ∈ (IIHomeo𝐽)
4 unitsscn 31143 . . . . 5 (0[,]1) ⊆ ℂ
5 xpss12 5573 . . . . 5 (((0[,]1) ⊆ ℂ ∧ (0[,]1) ⊆ ℂ) → ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
64, 4, 5mp2an 690 . . . 4 ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)
7 ax-mulf 10620 . . . . 5 · :(ℂ × ℂ)⟶ℂ
8 ffn 6517 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
9 fnssresb 6472 . . . . 5 ( · Fn (ℂ × ℂ) → (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)))
107, 8, 9mp2b 10 . . . 4 (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
116, 10mpbir 233 . . 3 ( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1))
12 ovres 7317 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) = (𝑢 · 𝑣))
13 iimulcl 23544 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) ∈ (0[,]1))
1412, 13eqeltrd 2916 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1))
1514rgen2 3206 . . 3 𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)
16 ffnov 7281 . . 3 (( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1) ↔ (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ∧ ∀𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)))
1711, 15, 16mpbir2an 709 . 2 ( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1)
18 iccssxr 12822 . . . . . 6 (0[,]+∞) ⊆ ℝ*
19 xpss12 5573 . . . . . 6 (((0[,]+∞) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2018, 18, 19mp2an 690 . . . . 5 ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)
21 xaddf 12620 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
22 ffn 6517 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
23 fnssresb 6472 . . . . . 6 ( +𝑒 Fn (ℝ* × ℝ*) → (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)))
2421, 22, 23mp2b 10 . . . . 5 (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2520, 24mpbir 233 . . . 4 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞))
26 xrge0pluscn.1 . . . . 5 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2726fneq1i 6453 . . . 4 ( + Fn ((0[,]+∞) × (0[,]+∞)) ↔ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)))
2825, 27mpbir 233 . . 3 + Fn ((0[,]+∞) × (0[,]+∞))
2926oveqi 7172 . . . . 5 (𝑎 + 𝑏) = (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏)
30 ovres 7317 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) = (𝑎 +𝑒 𝑏))
31 ge0xaddcl 12853 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 +𝑒 𝑏) ∈ (0[,]+∞))
3230, 31eqeltrd 2916 . . . . 5 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) ∈ (0[,]+∞))
3329, 32eqeltrid 2920 . . . 4 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 + 𝑏) ∈ (0[,]+∞))
3433rgen2 3206 . . 3 𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)
35 ffnov 7281 . . 3 ( + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) ↔ ( + Fn ((0[,]+∞) × (0[,]+∞)) ∧ ∀𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)))
3628, 34, 35mpbir2an 709 . 2 + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞)
37 iitopon 23490 . 2 II ∈ (TopOn‘(0[,]1))
38 letopon 21816 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
39 resttopon 21772 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
4038, 18, 39mp2an 690 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
412, 40eqeltri 2912 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
4226oveqi 7172 . . . 4 ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣))
431xrge0iifcnv 31180 . . . . . . . 8 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
4443simpli 486 . . . . . . 7 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
45 f1of 6618 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
4644, 45ax-mp 5 . . . . . 6 𝐹:(0[,]1)⟶(0[,]+∞)
4746ffvelrni 6853 . . . . 5 (𝑢 ∈ (0[,]1) → (𝐹𝑢) ∈ (0[,]+∞))
4846ffvelrni 6853 . . . . 5 (𝑣 ∈ (0[,]1) → (𝐹𝑣) ∈ (0[,]+∞))
49 ovres 7317 . . . . 5 (((𝐹𝑢) ∈ (0[,]+∞) ∧ (𝐹𝑣) ∈ (0[,]+∞)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5047, 48, 49syl2an 597 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5142, 50syl5eq 2871 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
521, 2xrge0iifhom 31184 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5312eqcomd 2830 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) = (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣))
5453fveq2d 6677 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)))
5551, 52, 543eqtr2rd 2866 . 2 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)) = ((𝐹𝑢) + (𝐹𝑣)))
56 eqid 2824 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
5756iistmd 31149 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
58 cnfldex 20551 . . . . . 6 fld ∈ V
59 ovex 7192 . . . . . 6 (0[,]1) ∈ V
60 eqid 2824 . . . . . . 7 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
61 eqid 2824 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
6260, 61mgpress 19253 . . . . . 6 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
6358, 59, 62mp2an 690 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
6460dfii4 23495 . . . . 5 II = (TopOpen‘(ℂflds (0[,]1)))
6563, 64mgptopn 19251 . . . 4 II = (TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))
66 cnfldbas 20552 . . . . . . 7 ℂ = (Base‘ℂfld)
6761, 66mgpbas 19248 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
68 cnfldmul 20554 . . . . . . 7 · = (.r‘ℂfld)
6961, 68mgpplusg 19246 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
707, 8ax-mp 5 . . . . . 6 · Fn (ℂ × ℂ)
7167, 56, 69, 70, 4ressplusf 30641 . . . . 5 (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1))) = ( · ↾ ((0[,]1) × (0[,]1)))
7271eqcomi 2833 . . . 4 ( · ↾ ((0[,]1) × (0[,]1))) = (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1)))
7365, 72tmdcn 22694 . . 3 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II))
7457, 73ax-mp 5 . 2 ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II)
753, 17, 36, 37, 41, 55, 74mndpluscn 31173 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  wss 3939  ifcif 4470  cmpt 5149   × cxp 5556  ccnv 5557  cres 5560   Fn wfn 6353  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   · cmul 10545  +∞cpnf 10675  *cxr 10677  cle 10679  -cneg 10874   +𝑒 cxad 12508  [,]cicc 12744  expce 15418  s cress 16487  t crest 16697  ordTopcordt 16775  +𝑓cplusf 17852  mulGrpcmgp 19242  fldccnfld 20548  TopOnctopon 21521   Cn ccn 21835   ×t ctx 22171  TopMndctmd 22681  IIcii 23486  logclog 25141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-ordt 16777  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-ps 17813  df-tsr 17814  df-plusf 17854  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-subrg 19536  df-abv 19591  df-lmod 19639  df-scaf 19640  df-sra 19947  df-rgmod 19948  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-tmd 22683  df-tgp 22684  df-trg 22771  df-xms 22933  df-ms 22934  df-tms 22935  df-nm 23195  df-ngp 23196  df-nrg 23198  df-nlm 23199  df-ii 23488  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143
This theorem is referenced by:  xrge0tmdALT  31193
  Copyright terms: Public domain W3C validator