Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0pluscn Structured version   Visualization version   GIF version

Theorem xrge0pluscn 33906
Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0pluscn.1 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
Assertion
Ref Expression
xrge0pluscn + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   + (𝑥)   𝐽(𝑥)

Proof of Theorem xrge0pluscn
Dummy variables 𝑦 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 xrge0iifhmeo.k . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2xrge0iifhmeo 33902 . 2 𝐹 ∈ (IIHomeo𝐽)
4 unitsscn 13421 . . . . 5 (0[,]1) ⊆ ℂ
5 xpss12 5638 . . . . 5 (((0[,]1) ⊆ ℂ ∧ (0[,]1) ⊆ ℂ) → ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
64, 4, 5mp2an 692 . . . 4 ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)
7 ax-mulf 11108 . . . . 5 · :(ℂ × ℂ)⟶ℂ
8 ffn 6656 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
9 fnssresb 6608 . . . . 5 ( · Fn (ℂ × ℂ) → (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)))
107, 8, 9mp2b 10 . . . 4 (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
116, 10mpbir 231 . . 3 ( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1))
12 ovres 7519 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) = (𝑢 · 𝑣))
13 iimulcl 24849 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) ∈ (0[,]1))
1412, 13eqeltrd 2828 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1))
1514rgen2 3169 . . 3 𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)
16 ffnov 7479 . . 3 (( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1) ↔ (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ∧ ∀𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)))
1711, 15, 16mpbir2an 711 . 2 ( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1)
18 iccssxr 13351 . . . . . 6 (0[,]+∞) ⊆ ℝ*
19 xpss12 5638 . . . . . 6 (((0[,]+∞) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2018, 18, 19mp2an 692 . . . . 5 ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)
21 xaddf 13144 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
22 ffn 6656 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
23 fnssresb 6608 . . . . . 6 ( +𝑒 Fn (ℝ* × ℝ*) → (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)))
2421, 22, 23mp2b 10 . . . . 5 (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2520, 24mpbir 231 . . . 4 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞))
26 xrge0pluscn.1 . . . . 5 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2726fneq1i 6583 . . . 4 ( + Fn ((0[,]+∞) × (0[,]+∞)) ↔ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)))
2825, 27mpbir 231 . . 3 + Fn ((0[,]+∞) × (0[,]+∞))
2926oveqi 7366 . . . . 5 (𝑎 + 𝑏) = (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏)
30 ovres 7519 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) = (𝑎 +𝑒 𝑏))
31 ge0xaddcl 13383 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 +𝑒 𝑏) ∈ (0[,]+∞))
3230, 31eqeltrd 2828 . . . . 5 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) ∈ (0[,]+∞))
3329, 32eqeltrid 2832 . . . 4 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 + 𝑏) ∈ (0[,]+∞))
3433rgen2 3169 . . 3 𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)
35 ffnov 7479 . . 3 ( + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) ↔ ( + Fn ((0[,]+∞) × (0[,]+∞)) ∧ ∀𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)))
3628, 34, 35mpbir2an 711 . 2 + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞)
37 iitopon 24788 . 2 II ∈ (TopOn‘(0[,]1))
38 letopon 23108 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
39 resttopon 23064 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
4038, 18, 39mp2an 692 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
412, 40eqeltri 2824 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
4226oveqi 7366 . . . 4 ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣))
431xrge0iifcnv 33899 . . . . . . . 8 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
4443simpli 483 . . . . . . 7 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
45 f1of 6768 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
4644, 45ax-mp 5 . . . . . 6 𝐹:(0[,]1)⟶(0[,]+∞)
4746ffvelcdmi 7021 . . . . 5 (𝑢 ∈ (0[,]1) → (𝐹𝑢) ∈ (0[,]+∞))
4846ffvelcdmi 7021 . . . . 5 (𝑣 ∈ (0[,]1) → (𝐹𝑣) ∈ (0[,]+∞))
49 ovres 7519 . . . . 5 (((𝐹𝑢) ∈ (0[,]+∞) ∧ (𝐹𝑣) ∈ (0[,]+∞)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5047, 48, 49syl2an 596 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5142, 50eqtrid 2776 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
521, 2xrge0iifhom 33903 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5312eqcomd 2735 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) = (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣))
5453fveq2d 6830 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)))
5551, 52, 543eqtr2rd 2771 . 2 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)) = ((𝐹𝑢) + (𝐹𝑣)))
56 eqid 2729 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
5756iistmd 33868 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
58 cnfldex 21282 . . . . . 6 fld ∈ V
59 ovex 7386 . . . . . 6 (0[,]1) ∈ V
60 eqid 2729 . . . . . . 7 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
61 eqid 2729 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
6260, 61mgpress 20053 . . . . . 6 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
6358, 59, 62mp2an 692 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
6460dfii4 24793 . . . . 5 II = (TopOpen‘(ℂflds (0[,]1)))
6563, 64mgptopn 20051 . . . 4 II = (TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))
66 cnfldbas 21283 . . . . . . 7 ℂ = (Base‘ℂfld)
6761, 66mgpbas 20048 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
68 cnfldmul 21287 . . . . . . 7 · = (.r‘ℂfld)
6961, 68mgpplusg 20047 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
707, 8ax-mp 5 . . . . . 6 · Fn (ℂ × ℂ)
7167, 56, 69, 70, 4ressplusf 32918 . . . . 5 (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1))) = ( · ↾ ((0[,]1) × (0[,]1)))
7271eqcomi 2738 . . . 4 ( · ↾ ((0[,]1) × (0[,]1))) = (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1)))
7365, 72tmdcn 23986 . . 3 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II))
7457, 73ax-mp 5 . 2 ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II)
753, 17, 36, 37, 41, 55, 74mndpluscn 33892 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  ifcif 4478  cmpt 5176   × cxp 5621  ccnv 5622  cres 5625   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033  +∞cpnf 11165  *cxr 11167  cle 11169  -cneg 11366   +𝑒 cxad 13030  [,]cicc 13269  expce 15986  s cress 17159  t crest 17342  ordTopcordt 17421  +𝑓cplusf 18529  mulGrpcmgp 20043  fldccnfld 21279  TopOnctopon 22813   Cn ccn 23127   ×t ctx 23463  TopMndctmd 23973  IIcii 24784  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-ordt 17423  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-ps 18490  df-tsr 18491  df-plusf 18531  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-abv 20712  df-lmod 20783  df-scaf 20784  df-sra 21095  df-rgmod 21096  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-tmd 23975  df-tgp 23976  df-trg 24063  df-xms 24224  df-ms 24225  df-tms 24226  df-nm 24486  df-ngp 24487  df-nrg 24489  df-nlm 24490  df-ii 24786  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481
This theorem is referenced by:  xrge0tmdALT  33912
  Copyright terms: Public domain W3C validator