Step | Hyp | Ref
| Expression |
1 | | ax-mulf 10882 |
. . . . . . 7
⊢ ·
:(ℂ × ℂ)⟶ℂ |
2 | | ffn 6584 |
. . . . . . 7
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ ·
Fn (ℂ × ℂ) |
4 | | dvdsmulf1o.x |
. . . . . . . . 9
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
5 | 4 | ssrab3 4011 |
. . . . . . . 8
⊢ 𝑋 ⊆
ℕ |
6 | | nnsscn 11908 |
. . . . . . . 8
⊢ ℕ
⊆ ℂ |
7 | 5, 6 | sstri 3926 |
. . . . . . 7
⊢ 𝑋 ⊆
ℂ |
8 | | dvdsmulf1o.y |
. . . . . . . . 9
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
9 | 8 | ssrab3 4011 |
. . . . . . . 8
⊢ 𝑌 ⊆
ℕ |
10 | 9, 6 | sstri 3926 |
. . . . . . 7
⊢ 𝑌 ⊆
ℂ |
11 | | xpss12 5595 |
. . . . . . 7
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
12 | 7, 10, 11 | mp2an 688 |
. . . . . 6
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
13 | | fnssres 6539 |
. . . . . 6
⊢ ((
· Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
( · ↾ (𝑋
× 𝑌)) Fn (𝑋 × 𝑌)) |
14 | 3, 12, 13 | mp2an 688 |
. . . . 5
⊢ (
· ↾ (𝑋 ×
𝑌)) Fn (𝑋 × 𝑌) |
15 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
16 | | ovres 7416 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖( · ↾ (𝑋 × 𝑌))𝑗) = (𝑖 · 𝑗)) |
17 | 16 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖( · ↾ (𝑋 × 𝑌))𝑗) = (𝑖 · 𝑗)) |
18 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀)) |
19 | 18, 4 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 ↔ (𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀)) |
20 | 19 | simplbi 497 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ) |
21 | 20 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℕ) |
22 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁)) |
23 | 22, 8 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁)) |
24 | 23 | simplbi 497 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ) |
25 | 24 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℕ) |
26 | 21, 25 | nnmulcld 11956 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℕ) |
27 | 23 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁) |
28 | 27 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∥ 𝑁) |
29 | 19 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀) |
30 | 29 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∥ 𝑀) |
31 | 25 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℤ) |
32 | | dvdsmulf1o.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℕ) |
33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℕ) |
34 | 33 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℤ) |
35 | 21 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℤ) |
36 | | dvdscmul 15920 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
37 | 31, 34, 35, 36 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
38 | | dvdsmulf1o.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
39 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℕ) |
40 | 39 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℤ) |
41 | | dvdsmulc 15921 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
42 | 35, 40, 34, 41 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
43 | 26 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℤ) |
44 | 35, 34 | zmulcld 12361 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑁) ∈ ℤ) |
45 | 40, 34 | zmulcld 12361 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑀 · 𝑁) ∈ ℤ) |
46 | | dvdstr 15931 |
. . . . . . . . . 10
⊢ (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑖 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
47 | 43, 44, 45, 46 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
48 | 37, 42, 47 | syl2and 607 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ((𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
49 | 28, 30, 48 | mp2and 695 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)) |
50 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝑖 · 𝑗) → (𝑥 ∥ (𝑀 · 𝑁) ↔ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
51 | | dvdsmulf1o.z |
. . . . . . . 8
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
52 | 50, 51 | elrab2 3620 |
. . . . . . 7
⊢ ((𝑖 · 𝑗) ∈ 𝑍 ↔ ((𝑖 · 𝑗) ∈ ℕ ∧ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
53 | 26, 49, 52 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ 𝑍) |
54 | 17, 53 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖( · ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
55 | 54 | ralrimivva 3114 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖( · ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
56 | | ffnov 7379 |
. . . 4
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)⟶𝑍 ↔ (( · ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖( · ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍)) |
57 | 15, 55, 56 | sylanbrc 582 |
. . 3
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍) |
58 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ) |
59 | 58 | nnnn0d 12223 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ0) |
60 | | simprll 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ 𝑋) |
61 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑚 → (𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀)) |
62 | 61, 4 | elrab2 3620 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝑋 ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀)) |
63 | 62 | simplbi 497 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∈ ℕ) |
64 | 60, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ) |
65 | 64 | nnnn0d 12223 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ0) |
66 | 58 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℤ) |
67 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℕ) |
68 | 67 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℤ) |
69 | | dvdsmul1 15915 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∥ (𝑖 · 𝑗)) |
70 | 66, 68, 69 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑖 · 𝑗)) |
71 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑚 · 𝑛)) |
72 | 7, 60 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℂ) |
73 | | simprlr 776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ 𝑌) |
74 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑛 → (𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁)) |
75 | 74, 8 | elrab2 3620 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑌 ↔ (𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁)) |
76 | 75 | simplbi 497 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∈ ℕ) |
77 | 73, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℕ) |
78 | 77 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℂ) |
79 | 72, 78 | mulcomd 10927 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑛 · 𝑚)) |
80 | 71, 79 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑛 · 𝑚)) |
81 | 70, 80 | breqtrd 5096 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑛 · 𝑚)) |
82 | 77 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℤ) |
83 | 34 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑁 ∈ ℤ) |
84 | 66, 83 | gcdcomd 16149 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = (𝑁 gcd 𝑖)) |
85 | 40 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑀 ∈ ℤ) |
86 | 32 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
87 | 38 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) |
88 | 86, 87 | gcdcomd 16149 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
89 | | dvdsmulf1o.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
90 | 88, 89 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
91 | 90 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑀) = 1) |
92 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑀) |
93 | | rpdvds 16293 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑖 ∥ 𝑀)) → (𝑁 gcd 𝑖) = 1) |
94 | 83, 66, 85, 91, 92, 93 | syl32anc 1376 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑖) = 1) |
95 | 84, 94 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = 1) |
96 | 75 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁) |
97 | 73, 96 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∥ 𝑁) |
98 | | rpdvds 16293 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑖 gcd 𝑁) = 1 ∧ 𝑛 ∥ 𝑁)) → (𝑖 gcd 𝑛) = 1) |
99 | 66, 82, 83, 95, 97, 98 | syl32anc 1376 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑛) = 1) |
100 | 64 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℤ) |
101 | | coprmdvds 16286 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
102 | 66, 82, 100, 101 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
103 | 81, 99, 102 | mp2and 695 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑚) |
104 | | dvdsmul1 15915 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∥ (𝑚 · 𝑛)) |
105 | 100, 82, 104 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑚 · 𝑛)) |
106 | 58 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℂ) |
107 | 67 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℂ) |
108 | 106, 107 | mulcomd 10927 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑗 · 𝑖)) |
109 | 71, 108 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑗 · 𝑖)) |
110 | 105, 109 | breqtrd 5096 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑗 · 𝑖)) |
111 | 100, 83 | gcdcomd 16149 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = (𝑁 gcd 𝑚)) |
112 | 62 | simprbi 496 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀) |
113 | 60, 112 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑀) |
114 | | rpdvds 16293 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑚 ∥ 𝑀)) → (𝑁 gcd 𝑚) = 1) |
115 | 83, 100, 85, 91, 113, 114 | syl32anc 1376 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑚) = 1) |
116 | 111, 115 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = 1) |
117 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∥ 𝑁) |
118 | | rpdvds 16293 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑚 gcd 𝑁) = 1 ∧ 𝑗 ∥ 𝑁)) → (𝑚 gcd 𝑗) = 1) |
119 | 100, 68, 83, 116, 117, 118 | syl32anc 1376 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑗) = 1) |
120 | | coprmdvds 16286 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
121 | 100, 68, 66, 120 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
122 | 110, 119,
121 | mp2and 695 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑖) |
123 | | dvdseq 15951 |
. . . . . . . . 9
⊢ (((𝑖 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) ∧ (𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖)) → 𝑖 = 𝑚) |
124 | 59, 65, 103, 122, 123 | syl22anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 = 𝑚) |
125 | 58 | nnne0d 11953 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ≠ 0) |
126 | 124 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑛) = (𝑚 · 𝑛)) |
127 | 71, 126 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑖 · 𝑛)) |
128 | 107, 78, 106, 125, 127 | mulcanad 11540 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 = 𝑛) |
129 | 124, 128 | opeq12d 4809 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉) |
130 | 129 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
131 | 130 | ralrimivva 3114 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
132 | 131 | ralrimivva 3114 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
133 | | fvres 6775 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑢) = ( · ‘𝑢)) |
134 | | fvres 6775 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑣) = ( · ‘𝑣)) |
135 | 133, 134 | eqeqan12d 2752 |
. . . . . . . 8
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → ((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) ↔ ( · ‘𝑢) = ( · ‘𝑣))) |
136 | 135 | imbi1d 341 |
. . . . . . 7
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → (((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ (( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣))) |
137 | 136 | ralbidva 3119 |
. . . . . 6
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣))) |
138 | 137 | ralbiia 3089 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣)) |
139 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ( · ‘𝑣) = ( ·
‘〈𝑚, 𝑛〉)) |
140 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑚 · 𝑛) = ( · ‘〈𝑚, 𝑛〉) |
141 | 139, 140 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ( · ‘𝑣) = (𝑚 · 𝑛)) |
142 | 141 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (( · ‘𝑢) = ( · ‘𝑣) ↔ ( · ‘𝑢) = (𝑚 · 𝑛))) |
143 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (𝑢 = 𝑣 ↔ 𝑢 = 〈𝑚, 𝑛〉)) |
144 | 142, 143 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ (( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉))) |
145 | 144 | ralxp 5739 |
. . . . . . 7
⊢
(∀𝑣 ∈
(𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉)) |
146 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ( · ‘𝑢) = ( ·
‘〈𝑖, 𝑗〉)) |
147 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑖 · 𝑗) = ( · ‘〈𝑖, 𝑗〉) |
148 | 146, 147 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ( · ‘𝑢) = (𝑖 · 𝑗)) |
149 | 148 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (( · ‘𝑢) = (𝑚 · 𝑛) ↔ (𝑖 · 𝑗) = (𝑚 · 𝑛))) |
150 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (𝑢 = 〈𝑚, 𝑛〉 ↔ 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
151 | 149, 150 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
152 | 151 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
153 | 145, 152 | syl5bb 282 |
. . . . . 6
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
154 | 153 | ralxp 5739 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
155 | 138, 154 | bitri 274 |
. . . 4
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
156 | 132, 155 | sylibr 233 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣)) |
157 | | dff13 7109 |
. . 3
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ↔ (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣))) |
158 | 57, 156, 157 | sylanbrc 582 |
. 2
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍) |
159 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑥 ∥ (𝑀 · 𝑁) ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
160 | 159, 51 | elrab2 3620 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ ℕ ∧ 𝑤 ∥ (𝑀 · 𝑁))) |
161 | 160 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ) |
162 | 161 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℕ) |
163 | 162 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℤ) |
164 | 38 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℕ) |
165 | 164 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℤ) |
166 | 164 | nnne0d 11953 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ≠ 0) |
167 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0) |
168 | 167 | necon3ai 2967 |
. . . . . . . . 9
⊢ (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
169 | 166, 168 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
170 | | gcdn0cl 16137 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ) |
171 | 163, 165,
169, 170 | syl21anc 834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ ℕ) |
172 | | gcddvds 16138 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
173 | 163, 165,
172 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
174 | 173 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∥ 𝑀) |
175 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑀) → (𝑥 ∥ 𝑀 ↔ (𝑤 gcd 𝑀) ∥ 𝑀)) |
176 | 175, 4 | elrab2 3620 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑀) ∈ 𝑋 ↔ ((𝑤 gcd 𝑀) ∈ ℕ ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
177 | 171, 174,
176 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ 𝑋) |
178 | 32 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℕ) |
179 | 178 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℤ) |
180 | 178 | nnne0d 11953 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ≠ 0) |
181 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
182 | 181 | necon3ai 2967 |
. . . . . . . . 9
⊢ (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
183 | 180, 182 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
184 | | gcdn0cl 16137 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ) |
185 | 163, 179,
183, 184 | syl21anc 834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ ℕ) |
186 | | gcddvds 16138 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
187 | 163, 179,
186 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
188 | 187 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∥ 𝑁) |
189 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑁) → (𝑥 ∥ 𝑁 ↔ (𝑤 gcd 𝑁) ∥ 𝑁)) |
190 | 189, 8 | elrab2 3620 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑁) ∈ 𝑌 ↔ ((𝑤 gcd 𝑁) ∈ ℕ ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
191 | 185, 188,
190 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ 𝑌) |
192 | 177, 191 | opelxpd 5618 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌)) |
193 | 192 | fvresd 6776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
194 | 89 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑀 gcd 𝑁) = 1) |
195 | | rpmulgcd2 16289 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
196 | 163, 165,
179, 194, 195 | syl31anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
197 | | df-ov 7258 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) |
198 | 196, 197 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
199 | 160 | simprbi 496 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∥ (𝑀 · 𝑁)) |
200 | 199 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∥ (𝑀 · 𝑁)) |
201 | 38, 32 | nnmulcld 11956 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
202 | | gcdeq 16191 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ ∧ (𝑀 · 𝑁) ∈ ℕ) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
203 | 161, 201,
202 | syl2anr 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
204 | 200, 203 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = 𝑤) |
205 | 193, 198,
204 | 3eqtr2rd 2785 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
206 | | fveq2 6756 |
. . . . . 6
⊢ (𝑢 = 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 → (( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
207 | 206 | rspceeqv 3567 |
. . . . 5
⊢
((〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌) ∧ 𝑤 = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢)) |
208 | 192, 205,
207 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢)) |
209 | 208 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢)) |
210 | | dffo3 6960 |
. . 3
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–onto→𝑍 ↔ (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢))) |
211 | 57, 209, 210 | sylanbrc 582 |
. 2
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
212 | | df-f1o 6425 |
. 2
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 ↔ (( · ↾
(𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ∧ ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍)) |
213 | 158, 211,
212 | sylanbrc 582 |
1
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |