| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncvcOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cncvs 25082. The set of complex numbers is a complex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| cncvcOLD | ⊢ 〈 + , · 〉 ∈ CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD 30572 | . 2 ⊢ + ∈ AbelOp | |
| 2 | ax-addf 11095 | . . 3 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 3 | 2 | fdmi 6670 | . 2 ⊢ dom + = (ℂ × ℂ) |
| 4 | ax-mulf 11096 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 5 | mullid 11121 | . 2 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 6 | adddi 11105 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) | |
| 7 | adddir 11113 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥))) | |
| 8 | mulass 11104 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))) | |
| 9 | eqid 2733 | . 2 ⊢ 〈 + , · 〉 = 〈 + , · 〉 | |
| 10 | 1, 3, 4, 5, 6, 7, 8, 9 | isvciOLD 30571 | 1 ⊢ 〈 + , · 〉 ∈ CVecOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 〈cop 4583 × cxp 5619 ℂcc 11014 + caddc 11019 · cmul 11021 CVecOLDcvc 30549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-sub 11356 df-neg 11357 df-grpo 30484 df-ablo 30536 df-vc 30550 |
| This theorem is referenced by: cnnv 30668 |
| Copyright terms: Public domain | W3C validator |