MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncvcOLD Structured version   Visualization version   GIF version

Theorem cncvcOLD 28369
Description: Obsolete version of cncvs 23753. The set of complex numbers is a complex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cncvcOLD ⟨ + , · ⟩ ∈ CVecOLD

Proof of Theorem cncvcOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddabloOLD 28367 . 2 + ∈ AbelOp
2 ax-addf 10609 . . 3 + :(ℂ × ℂ)⟶ℂ
32fdmi 6502 . 2 dom + = (ℂ × ℂ)
4 ax-mulf 10610 . 2 · :(ℂ × ℂ)⟶ℂ
5 mulid2 10633 . 2 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
6 adddi 10619 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7 adddir 10625 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8 mulass 10618 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9 eqid 2801 . 2 ⟨ + , · ⟩ = ⟨ + , · ⟩
101, 3, 4, 5, 6, 7, 8, 9isvciOLD 28366 1 ⟨ + , · ⟩ ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  cop 4534   × cxp 5521  cc 10528   + caddc 10533   · cmul 10535  CVecOLDcvc 28344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-sub 10865  df-neg 10866  df-grpo 28279  df-ablo 28331  df-vc 28345
This theorem is referenced by:  cnnv  28463
  Copyright terms: Public domain W3C validator