![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncvcOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cncvs 23467. The set of complex numbers is a complex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cncvcOLD | ⊢ 〈 + , · 〉 ∈ CVecOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 28150 | . 2 ⊢ + ∈ AbelOp | |
2 | ax-addf 10412 | . . 3 ⊢ + :(ℂ × ℂ)⟶ℂ | |
3 | 2 | fdmi 6351 | . 2 ⊢ dom + = (ℂ × ℂ) |
4 | ax-mulf 10413 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
5 | mulid2 10436 | . 2 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
6 | adddi 10422 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) | |
7 | adddir 10428 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥))) | |
8 | mulass 10421 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))) | |
9 | eqid 2771 | . 2 ⊢ 〈 + , · 〉 = 〈 + , · 〉 | |
10 | 1, 3, 4, 5, 6, 7, 8, 9 | isvciOLD 28149 | 1 ⊢ 〈 + , · 〉 ∈ CVecOLD |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2051 〈cop 4441 × cxp 5401 ℂcc 10331 + caddc 10336 · cmul 10338 CVecOLDcvc 28127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-addf 10412 ax-mulf 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-ltxr 10477 df-sub 10670 df-neg 10671 df-grpo 28062 df-ablo 28114 df-vc 28128 |
This theorem is referenced by: cnnv 28246 |
Copyright terms: Public domain | W3C validator |