![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iimulcnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iimulcn 24783 as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iimulcnOLD | β’ (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn II) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . 6 β’ (TopOpenββfld) = (TopOpenββfld) | |
2 | 1 | dfii3 24725 | . . . . 5 β’ II = ((TopOpenββfld) βΎt (0[,]1)) |
3 | 1 | cnfldtopon 24621 | . . . . . 6 β’ (TopOpenββfld) β (TopOnββ) |
4 | 3 | a1i 11 | . . . . 5 β’ (β€ β (TopOpenββfld) β (TopOnββ)) |
5 | unitssre 13473 | . . . . . . 7 β’ (0[,]1) β β | |
6 | ax-resscn 11163 | . . . . . . 7 β’ β β β | |
7 | 5, 6 | sstri 3983 | . . . . . 6 β’ (0[,]1) β β |
8 | 7 | a1i 11 | . . . . 5 β’ (β€ β (0[,]1) β β) |
9 | ax-mulf 11186 | . . . . . . . . 9 β’ Β· :(β Γ β)βΆβ | |
10 | ffn 6707 | . . . . . . . . 9 β’ ( Β· :(β Γ β)βΆβ β Β· Fn (β Γ β)) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 β’ Β· Fn (β Γ β) |
12 | fnov 7532 | . . . . . . . 8 β’ ( Β· Fn (β Γ β) β Β· = (π₯ β β, π¦ β β β¦ (π₯ Β· π¦))) | |
13 | 11, 12 | mpbi 229 | . . . . . . 7 β’ Β· = (π₯ β β, π¦ β β β¦ (π₯ Β· π¦)) |
14 | 1 | mulcn 24705 | . . . . . . 7 β’ Β· β (((TopOpenββfld) Γt (TopOpenββfld)) Cn (TopOpenββfld)) |
15 | 13, 14 | eqeltrri 2822 | . . . . . 6 β’ (π₯ β β, π¦ β β β¦ (π₯ Β· π¦)) β (((TopOpenββfld) Γt (TopOpenββfld)) Cn (TopOpenββfld)) |
16 | 15 | a1i 11 | . . . . 5 β’ (β€ β (π₯ β β, π¦ β β β¦ (π₯ Β· π¦)) β (((TopOpenββfld) Γt (TopOpenββfld)) Cn (TopOpenββfld))) |
17 | 2, 4, 8, 2, 4, 8, 16 | cnmpt2res 23503 | . . . 4 β’ (β€ β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn (TopOpenββfld))) |
18 | 17 | mptru 1540 | . . 3 β’ (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn (TopOpenββfld)) |
19 | iimulcl 24782 | . . . . . 6 β’ ((π₯ β (0[,]1) β§ π¦ β (0[,]1)) β (π₯ Β· π¦) β (0[,]1)) | |
20 | 19 | rgen2 3189 | . . . . 5 β’ βπ₯ β (0[,]1)βπ¦ β (0[,]1)(π₯ Β· π¦) β (0[,]1) |
21 | eqid 2724 | . . . . . . 7 β’ (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) | |
22 | 21 | fmpo 8047 | . . . . . 6 β’ (βπ₯ β (0[,]1)βπ¦ β (0[,]1)(π₯ Β· π¦) β (0[,]1) β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)):((0[,]1) Γ (0[,]1))βΆ(0[,]1)) |
23 | frn 6714 | . . . . . 6 β’ ((π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)):((0[,]1) Γ (0[,]1))βΆ(0[,]1) β ran (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β (0[,]1)) | |
24 | 22, 23 | sylbi 216 | . . . . 5 β’ (βπ₯ β (0[,]1)βπ¦ β (0[,]1)(π₯ Β· π¦) β (0[,]1) β ran (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β (0[,]1)) |
25 | 20, 24 | ax-mp 5 | . . . 4 β’ ran (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β (0[,]1) |
26 | cnrest2 23112 | . . . 4 β’ (((TopOpenββfld) β (TopOnββ) β§ ran (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β (0[,]1) β§ (0[,]1) β β) β ((π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn (TopOpenββfld)) β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn ((TopOpenββfld) βΎt (0[,]1))))) | |
27 | 3, 25, 7, 26 | mp3an 1457 | . . 3 β’ ((π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn (TopOpenββfld)) β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn ((TopOpenββfld) βΎt (0[,]1)))) |
28 | 18, 27 | mpbi 229 | . 2 β’ (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn ((TopOpenββfld) βΎt (0[,]1))) |
29 | 2 | oveq2i 7412 | . 2 β’ ((II Γt II) Cn II) = ((II Γt II) Cn ((TopOpenββfld) βΎt (0[,]1))) |
30 | 28, 29 | eleqtrri 2824 | 1 β’ (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯ Β· π¦)) β ((II Γt II) Cn II) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1533 β€wtru 1534 β wcel 2098 βwral 3053 β wss 3940 Γ cxp 5664 ran crn 5667 Fn wfn 6528 βΆwf 6529 βcfv 6533 (class class class)co 7401 β cmpo 7403 βcc 11104 βcr 11105 0cc0 11106 1c1 11107 Β· cmul 11111 [,]cicc 13324 βΎt crest 17365 TopOpenctopn 17366 βfldccnfld 21228 TopOnctopon 22734 Cn ccn 23050 Γt ctx 23386 IIcii 24717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-icc 13328 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cn 23053 df-cnp 23054 df-tx 23388 df-hmeo 23581 df-xms 24148 df-ms 24149 df-tms 24150 df-ii 24719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |