MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcnOLD Structured version   Visualization version   GIF version

Theorem iimulcnOLD 24842
Description: Obsolete version of iimulcn 24841 as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iimulcnOLD (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II)
Distinct variable group:   𝑥,𝑦

Proof of Theorem iimulcnOLD
StepHypRef Expression
1 eqid 2730 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21dfii3 24783 . . . . 5 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
31cnfldtopon 24677 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
43a1i 11 . . . . 5 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
5 unitssre 13467 . . . . . . 7 (0[,]1) ⊆ ℝ
6 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
75, 6sstri 3959 . . . . . 6 (0[,]1) ⊆ ℂ
87a1i 11 . . . . 5 (⊤ → (0[,]1) ⊆ ℂ)
9 ax-mulf 11155 . . . . . . . . 9 · :(ℂ × ℂ)⟶ℂ
10 ffn 6691 . . . . . . . . 9 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
119, 10ax-mp 5 . . . . . . . 8 · Fn (ℂ × ℂ)
12 fnov 7523 . . . . . . . 8 ( · Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)))
1311, 12mpbi 230 . . . . . . 7 · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
141mulcn 24763 . . . . . . 7 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1513, 14eqeltrri 2826 . . . . . 6 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1615a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
172, 4, 8, 2, 4, 8, 16cnmpt2res 23571 . . . 4 (⊤ → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
1817mptru 1547 . . 3 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld))
19 iimulcl 24840 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (𝑥 · 𝑦) ∈ (0[,]1))
2019rgen2 3178 . . . . 5 𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1)
21 eqid 2730 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦))
2221fmpo 8050 . . . . . 6 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1))
23 frn 6698 . . . . . 6 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1))
2422, 23sylbi 217 . . . . 5 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1))
2520, 24ax-mp 5 . . . 4 ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1)
26 cnrest2 23180 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
273, 25, 7, 26mp3an 1463 . . 3 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2818, 27mpbi 230 . 2 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
292oveq2i 7401 . 2 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
3028, 29eleqtrri 2828 1 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2109  wral 3045  wss 3917   × cxp 5639  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  [,]cicc 13316  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  IIcii 24775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-ii 24777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator