![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2865 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | orbi1d 941 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
3 | elun 3949 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
4 | elun 3949 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 306 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
6 | 5 | eqrdv 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ∪ cun 3765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-un 3772 |
This theorem is referenced by: uneq2 3957 uneq12 3958 uneq1i 3959 uneq1d 3962 unineq 4076 prprc1 4487 uniprg 4640 relresfld 5879 unexb 7190 oarec 7880 xpider 8054 ralxpmap 8145 undifixp 8182 unxpdom 8407 enp1ilem 8434 findcard2 8440 domunfican 8473 pwfilem 8500 fin1a2lem10 9517 incexclem 14903 lcmfunsnlem 15686 ramub1lem1 16060 ramub1 16062 mreexexlem3d 16618 mreexexlem4d 16619 ipodrsima 17477 mplsubglem 19754 mretopd 21222 iscldtop 21225 nconnsubb 21552 plyval 24287 spanun 28921 difeq 29865 unelldsys 30729 isros 30739 unelros 30742 difelros 30743 rossros 30751 measun 30782 inelcarsg 30881 actfunsnf1o 31194 actfunsnrndisj 31195 mrsubvrs 31928 altopthsn 32573 rankung 32778 poimirlem28 33918 islshp 34992 lshpset2N 35132 paddval 35811 nacsfix 38049 eldioph4b 38149 eldioph4i 38150 diophren 38151 clsk3nimkb 39108 isotone1 39116 compneOLD 39413 fiiuncl 39981 founiiun0 40119 infxrpnf 40405 meadjun 41410 hoidmvle 41548 |
Copyright terms: Public domain | W3C validator |