| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4112 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4112 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2727 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: uneq2 4121 uneq12 4122 uneq1i 4123 uneq1d 4126 unineq 4247 prprc1 4725 relresfld 6237 unexbOLD 7704 oarec 8503 xpider 8738 ralxpmap 8846 undifixp 8884 findcard2 9105 unxpdom 9176 enp1ilem 9199 pwfilem 9243 domunfican 9248 fin1a2lem10 10338 incexclem 15778 lcmfunsnlem 16587 ramub1lem1 16973 ramub1 16975 mreexexlem3d 17587 mreexexlem4d 17588 ipodrsima 18482 mplsubglem 21941 mretopd 23012 iscldtop 23015 nconnsubb 23343 plyval 26131 spanun 31524 difeq 32497 unelldsys 34141 isros 34151 unelros 34154 difelros 34155 rossros 34163 measun 34194 inelcarsg 34295 actfunsnf1o 34588 actfunsnrndisj 34589 mrsubvrs 35502 altopthsn 35942 rankung 36147 bj-adjg1 37024 poimirlem28 37635 islshp 38965 lshpset2N 39105 paddval 39785 nacsfix 42693 eldioph4b 42792 eldioph4i 42793 diophren 42794 clsk3nimkb 44022 isotone1 44030 fiiuncl 45052 founiiun0 45177 infxrpnf 45435 meadjun 46453 hoidmvle 46591 |
| Copyright terms: Public domain | W3C validator |