![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | orbi1d 915 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
3 | elun 4176 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
4 | elun 4176 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
6 | 5 | eqrdv 2738 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: uneq2 4185 uneq12 4186 uneq1i 4187 uneq1d 4190 unineq 4307 prprc1 4790 relresfld 6307 unexbOLD 7783 oarec 8618 xpider 8846 ralxpmap 8954 undifixp 8992 findcard2 9230 unxpdom 9316 enp1ilem 9340 pwfilem 9384 domunfican 9389 pwfilemOLD 9416 fin1a2lem10 10478 incexclem 15884 lcmfunsnlem 16688 ramub1lem1 17073 ramub1 17075 mreexexlem3d 17704 mreexexlem4d 17705 ipodrsima 18611 mplsubglem 22042 mretopd 23121 iscldtop 23124 nconnsubb 23452 plyval 26252 spanun 31577 difeq 32548 unelldsys 34122 isros 34132 unelros 34135 difelros 34136 rossros 34144 measun 34175 inelcarsg 34276 actfunsnf1o 34581 actfunsnrndisj 34582 mrsubvrs 35490 altopthsn 35925 rankung 36130 bj-adjg1 37009 poimirlem28 37608 islshp 38935 lshpset2N 39075 paddval 39755 nacsfix 42668 eldioph4b 42767 eldioph4i 42768 diophren 42769 clsk3nimkb 44002 isotone1 44010 fiiuncl 44967 founiiun0 45097 infxrpnf 45361 meadjun 46383 hoidmvle 46521 |
Copyright terms: Public domain | W3C validator |