| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4100 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4100 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2729 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: uneq2 4109 uneq12 4110 uneq1i 4111 uneq1d 4114 unineq 4235 prprc1 4715 relresfld 6223 unexbOLD 7681 oarec 8477 xpider 8712 ralxpmap 8820 undifixp 8858 findcard2 9074 unxpdom 9143 enp1ilem 9162 pwfilem 9202 domunfican 9206 fin1a2lem10 10300 incexclem 15743 lcmfunsnlem 16552 ramub1lem1 16938 ramub1 16940 mreexexlem3d 17552 mreexexlem4d 17553 ipodrsima 18447 mplsubglem 21936 mretopd 23007 iscldtop 23010 nconnsubb 23338 plyval 26125 spanun 31525 difeq 32498 unelldsys 34171 isros 34181 unelros 34184 difelros 34185 rossros 34193 measun 34224 inelcarsg 34324 actfunsnf1o 34617 actfunsnrndisj 34618 mrsubvrs 35566 altopthsn 36003 rankung 36208 bj-adjg1 37085 poimirlem28 37696 islshp 39026 lshpset2N 39166 paddval 39845 nacsfix 42753 eldioph4b 42852 eldioph4i 42853 diophren 42854 clsk3nimkb 44081 isotone1 44089 fiiuncl 45110 founiiun0 45235 infxrpnf 45492 meadjun 46508 hoidmvle 46646 |
| Copyright terms: Public domain | W3C validator |