| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4112 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4112 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2727 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: uneq2 4121 uneq12 4122 uneq1i 4123 uneq1d 4126 unineq 4247 prprc1 4725 relresfld 6237 unexbOLD 7704 oarec 8503 xpider 8738 ralxpmap 8846 undifixp 8884 findcard2 9105 unxpdom 9176 enp1ilem 9199 pwfilem 9243 domunfican 9248 fin1a2lem10 10338 incexclem 15778 lcmfunsnlem 16587 ramub1lem1 16973 ramub1 16975 mreexexlem3d 17583 mreexexlem4d 17584 ipodrsima 18476 mplsubglem 21884 mretopd 22955 iscldtop 22958 nconnsubb 23286 plyval 26074 spanun 31447 difeq 32420 unelldsys 34121 isros 34131 unelros 34134 difelros 34135 rossros 34143 measun 34174 inelcarsg 34275 actfunsnf1o 34568 actfunsnrndisj 34569 mrsubvrs 35482 altopthsn 35922 rankung 36127 bj-adjg1 37004 poimirlem28 37615 islshp 38945 lshpset2N 39085 paddval 39765 nacsfix 42673 eldioph4b 42772 eldioph4i 42773 diophren 42774 clsk3nimkb 44002 isotone1 44010 fiiuncl 45032 founiiun0 45157 infxrpnf 45415 meadjun 46433 hoidmvle 46571 |
| Copyright terms: Public domain | W3C validator |