| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4119 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4119 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2728 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 |
| This theorem is referenced by: uneq2 4128 uneq12 4129 uneq1i 4130 uneq1d 4133 unineq 4254 prprc1 4732 relresfld 6252 unexbOLD 7727 oarec 8529 xpider 8764 ralxpmap 8872 undifixp 8910 findcard2 9134 unxpdom 9207 enp1ilem 9230 pwfilem 9274 domunfican 9279 fin1a2lem10 10369 incexclem 15809 lcmfunsnlem 16618 ramub1lem1 17004 ramub1 17006 mreexexlem3d 17614 mreexexlem4d 17615 ipodrsima 18507 mplsubglem 21915 mretopd 22986 iscldtop 22989 nconnsubb 23317 plyval 26105 spanun 31481 difeq 32454 unelldsys 34155 isros 34165 unelros 34168 difelros 34169 rossros 34177 measun 34208 inelcarsg 34309 actfunsnf1o 34602 actfunsnrndisj 34603 mrsubvrs 35516 altopthsn 35956 rankung 36161 bj-adjg1 37038 poimirlem28 37649 islshp 38979 lshpset2N 39119 paddval 39799 nacsfix 42707 eldioph4b 42806 eldioph4i 42807 diophren 42808 clsk3nimkb 44036 isotone1 44044 fiiuncl 45066 founiiun0 45191 infxrpnf 45449 meadjun 46467 hoidmvle 46605 |
| Copyright terms: Public domain | W3C validator |