| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4116 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4116 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2727 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 |
| This theorem is referenced by: uneq2 4125 uneq12 4126 uneq1i 4127 uneq1d 4130 unineq 4251 prprc1 4729 relresfld 6249 unexbOLD 7724 oarec 8526 xpider 8761 ralxpmap 8869 undifixp 8907 findcard2 9128 unxpdom 9200 enp1ilem 9223 pwfilem 9267 domunfican 9272 fin1a2lem10 10362 incexclem 15802 lcmfunsnlem 16611 ramub1lem1 16997 ramub1 16999 mreexexlem3d 17607 mreexexlem4d 17608 ipodrsima 18500 mplsubglem 21908 mretopd 22979 iscldtop 22982 nconnsubb 23310 plyval 26098 spanun 31474 difeq 32447 unelldsys 34148 isros 34158 unelros 34161 difelros 34162 rossros 34170 measun 34201 inelcarsg 34302 actfunsnf1o 34595 actfunsnrndisj 34596 mrsubvrs 35509 altopthsn 35949 rankung 36154 bj-adjg1 37031 poimirlem28 37642 islshp 38972 lshpset2N 39112 paddval 39792 nacsfix 42700 eldioph4b 42799 eldioph4i 42800 diophren 42801 clsk3nimkb 44029 isotone1 44037 fiiuncl 45059 founiiun0 45184 infxrpnf 45442 meadjun 46460 hoidmvle 46598 |
| Copyright terms: Public domain | W3C validator |