| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4104 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4104 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2727 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 |
| This theorem is referenced by: uneq2 4113 uneq12 4114 uneq1i 4115 uneq1d 4118 unineq 4239 prprc1 4717 relresfld 6224 unexbOLD 7684 oarec 8480 xpider 8715 ralxpmap 8823 undifixp 8861 findcard2 9078 unxpdom 9148 enp1ilem 9167 pwfilem 9207 domunfican 9211 fin1a2lem10 10303 incexclem 15743 lcmfunsnlem 16552 ramub1lem1 16938 ramub1 16940 mreexexlem3d 17552 mreexexlem4d 17553 ipodrsima 18447 mplsubglem 21906 mretopd 22977 iscldtop 22980 nconnsubb 23308 plyval 26096 spanun 31489 difeq 32462 unelldsys 34125 isros 34135 unelros 34138 difelros 34139 rossros 34147 measun 34178 inelcarsg 34279 actfunsnf1o 34572 actfunsnrndisj 34573 mrsubvrs 35495 altopthsn 35935 rankung 36140 bj-adjg1 37017 poimirlem28 37628 islshp 38958 lshpset2N 39098 paddval 39777 nacsfix 42685 eldioph4b 42784 eldioph4i 42785 diophren 42786 clsk3nimkb 44013 isotone1 44021 fiiuncl 45043 founiiun0 45168 infxrpnf 45425 meadjun 46443 hoidmvle 46581 |
| Copyright terms: Public domain | W3C validator |