Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | orbi1d 913 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
3 | elun 4079 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
4 | elun 4079 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 313 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
6 | 5 | eqrdv 2736 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: uneq2 4087 uneq12 4088 uneq1i 4089 uneq1d 4092 unineq 4208 prprc1 4698 uniprgOLD 4856 relresfld 6168 unexb 7576 oarec 8355 xpider 8535 ralxpmap 8642 undifixp 8680 findcard2 8909 pwfilem 8922 unxpdom 8959 enp1ilem 8981 findcard2OLD 8986 domunfican 9017 pwfilemOLD 9043 fin1a2lem10 10096 incexclem 15476 lcmfunsnlem 16274 ramub1lem1 16655 ramub1 16657 mreexexlem3d 17272 mreexexlem4d 17273 ipodrsima 18174 mplsubglem 21115 mretopd 22151 iscldtop 22154 nconnsubb 22482 plyval 25259 spanun 29808 difeq 30766 unelldsys 32026 isros 32036 unelros 32039 difelros 32040 rossros 32048 measun 32079 inelcarsg 32178 actfunsnf1o 32484 actfunsnrndisj 32485 mrsubvrs 33384 altopthsn 34190 rankung 34395 poimirlem28 35732 islshp 36920 lshpset2N 37060 paddval 37739 nacsfix 40450 eldioph4b 40549 eldioph4i 40550 diophren 40551 clsk3nimkb 41539 isotone1 41547 fiiuncl 42502 founiiun0 42617 infxrpnf 42876 meadjun 43890 hoidmvle 44028 |
Copyright terms: Public domain | W3C validator |