| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| uneq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2824 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4133 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4133 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | eqrdv 2734 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 |
| This theorem is referenced by: uneq2 4142 uneq12 4143 uneq1i 4144 uneq1d 4147 unineq 4268 prprc1 4746 relresfld 6270 unexbOLD 7747 oarec 8579 xpider 8807 ralxpmap 8915 undifixp 8953 findcard2 9183 unxpdom 9266 enp1ilem 9289 pwfilem 9333 domunfican 9338 fin1a2lem10 10428 incexclem 15857 lcmfunsnlem 16665 ramub1lem1 17051 ramub1 17053 mreexexlem3d 17663 mreexexlem4d 17664 ipodrsima 18556 mplsubglem 21964 mretopd 23035 iscldtop 23038 nconnsubb 23366 plyval 26155 spanun 31531 difeq 32504 unelldsys 34194 isros 34204 unelros 34207 difelros 34208 rossros 34216 measun 34247 inelcarsg 34348 actfunsnf1o 34641 actfunsnrndisj 34642 mrsubvrs 35549 altopthsn 35984 rankung 36189 bj-adjg1 37066 poimirlem28 37677 islshp 39002 lshpset2N 39142 paddval 39822 nacsfix 42702 eldioph4b 42801 eldioph4i 42802 diophren 42803 clsk3nimkb 44031 isotone1 44039 fiiuncl 45056 founiiun0 45181 infxrpnf 45440 meadjun 46458 hoidmvle 46596 |
| Copyright terms: Public domain | W3C validator |