MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneq1 Structured version   Visualization version   GIF version

Theorem uneq1 4141
Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
uneq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem uneq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2824 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21orbi1d 916 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
3 elun 4133 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elun 4133 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43bitr4g 314 . 2 (𝐴 = 𝐵 → (𝑥 ∈ (𝐴𝐶) ↔ 𝑥 ∈ (𝐵𝐶)))
65eqrdv 2734 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  cun 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936
This theorem is referenced by:  uneq2  4142  uneq12  4143  uneq1i  4144  uneq1d  4147  unineq  4268  prprc1  4746  relresfld  6270  unexbOLD  7747  oarec  8579  xpider  8807  ralxpmap  8915  undifixp  8953  findcard2  9183  unxpdom  9266  enp1ilem  9289  pwfilem  9333  domunfican  9338  fin1a2lem10  10428  incexclem  15857  lcmfunsnlem  16665  ramub1lem1  17051  ramub1  17053  mreexexlem3d  17663  mreexexlem4d  17664  ipodrsima  18556  mplsubglem  21964  mretopd  23035  iscldtop  23038  nconnsubb  23366  plyval  26155  spanun  31531  difeq  32504  unelldsys  34194  isros  34204  unelros  34207  difelros  34208  rossros  34216  measun  34247  inelcarsg  34348  actfunsnf1o  34641  actfunsnrndisj  34642  mrsubvrs  35549  altopthsn  35984  rankung  36189  bj-adjg1  37066  poimirlem28  37677  islshp  39002  lshpset2N  39142  paddval  39822  nacsfix  42702  eldioph4b  42801  eldioph4i  42802  diophren  42803  clsk3nimkb  44031  isotone1  44039  fiiuncl  45056  founiiun0  45181  infxrpnf  45440  meadjun  46458  hoidmvle  46596
  Copyright terms: Public domain W3C validator