| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
| elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
| 2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elab3g 3643 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: fvelrnb 6887 elrnmpo 7489 ovelrn 7529 isfi 8908 isnum2 9860 pm54.43lem 9915 isfin3 10209 isfin5 10212 isfin6 10213 genpelv 10913 iswrd 14440 4sqlem2 16879 vdwapval 16903 isghm 19112 isghmOLD 19113 issrng 20747 ellspsn 20924 lspprel 21016 iscss 21608 ellspd 21727 istps 22837 islp 23043 is2ndc 23349 elpt 23475 itg2l 25646 elply 26116 isismt 28497 bj-ififc 36555 isline 39718 ispointN 39721 ispsubsp 39724 ispsubclN 39916 islaut 40062 ispautN 40078 istendo 40739 sn-isghm 42646 rngunsnply 43142 |
| Copyright terms: Public domain | W3C validator |