| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
| elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
| 2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elab3g 3637 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: fvelrnb 6888 elrnmpo 7488 ovelrn 7528 isfi 8904 isnum2 9845 pm54.43lem 9900 isfin3 10194 isfin5 10197 isfin6 10198 genpelv 10898 iswrd 14424 4sqlem2 16863 vdwapval 16887 isghm 19129 isghmOLD 19130 issrng 20761 ellspsn 20938 lspprel 21030 iscss 21622 ellspd 21741 istps 22850 islp 23056 is2ndc 23362 elpt 23488 itg2l 25658 elply 26128 isismt 28513 bj-ififc 36647 isline 39858 ispointN 39861 ispsubsp 39864 ispsubclN 40056 islaut 40202 ispautN 40218 istendo 40879 sn-isghm 42791 rngunsnply 43286 |
| Copyright terms: Public domain | W3C validator |