Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elab3g 3617 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: fvelrnb 6839 elrnmpo 7419 ovelrn 7457 isfi 8773 isnum2 9712 pm54.43lem 9767 isfin3 10061 isfin5 10064 isfin6 10065 genpelv 10765 iswrd 14228 4sqlem2 16659 vdwapval 16683 isghm 18843 issrng 20119 lspsnel 20274 lspprel 20365 iscss 20897 ellspd 21018 istps 22092 islp 22300 is2ndc 22606 elpt 22732 itg2l 24903 elply 25365 isismt 26904 bj-ififc 34772 isline 37760 ispointN 37763 ispsubsp 37766 ispsubclN 37958 islaut 38104 ispautN 38120 istendo 38781 rngunsnply 41005 |
Copyright terms: Public domain | W3C validator |