MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3 Structured version   Visualization version   GIF version

Theorem elab3 3653
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.)
Hypotheses
Ref Expression
elab3.1 (𝜓𝐴𝑉)
elab3.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elab3
StepHypRef Expression
1 elab3.1 . 2 (𝜓𝐴𝑉)
2 elab3.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32elab3g 3652 . 2 ((𝜓𝐴𝑉) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3ax-mp 5 1 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803
This theorem is referenced by:  fvelrnb  6921  elrnmpo  7525  ovelrn  7565  isfi  8947  isnum2  9898  pm54.43lem  9953  isfin3  10249  isfin5  10252  isfin6  10253  genpelv  10953  iswrd  14480  4sqlem2  16920  vdwapval  16944  isghm  19147  isghmOLD  19148  issrng  20753  ellspsn  20909  lspprel  21001  iscss  21592  ellspd  21711  istps  22821  islp  23027  is2ndc  23333  elpt  23459  itg2l  25630  elply  26100  isismt  28461  bj-ififc  36570  isline  39733  ispointN  39736  ispsubsp  39739  ispsubclN  39931  islaut  40077  ispautN  40093  istendo  40754  sn-isghm  42661  rngunsnply  43158
  Copyright terms: Public domain W3C validator