| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
| elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
| 2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elab3g 3655 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: fvelrnb 6924 elrnmpo 7528 ovelrn 7568 isfi 8950 isnum2 9905 pm54.43lem 9960 isfin3 10256 isfin5 10259 isfin6 10260 genpelv 10960 iswrd 14487 4sqlem2 16927 vdwapval 16951 isghm 19154 isghmOLD 19155 issrng 20760 ellspsn 20916 lspprel 21008 iscss 21599 ellspd 21718 istps 22828 islp 23034 is2ndc 23340 elpt 23466 itg2l 25637 elply 26107 isismt 28468 bj-ififc 36577 isline 39740 ispointN 39743 ispsubsp 39746 ispsubclN 39938 islaut 40084 ispautN 40100 istendo 40761 sn-isghm 42668 rngunsnply 43165 |
| Copyright terms: Public domain | W3C validator |