| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
| elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
| 2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elab3g 3641 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: fvelrnb 6882 elrnmpo 7482 ovelrn 7522 isfi 8898 isnum2 9835 pm54.43lem 9890 isfin3 10184 isfin5 10187 isfin6 10188 genpelv 10888 iswrd 14419 4sqlem2 16858 vdwapval 16882 isghm 19125 isghmOLD 19126 issrng 20757 ellspsn 20934 lspprel 21026 iscss 21618 ellspd 21737 istps 22847 islp 23053 is2ndc 23359 elpt 23485 itg2l 25655 elply 26125 isismt 28510 bj-ififc 36615 isline 39777 ispointN 39780 ispsubsp 39783 ispsubclN 39975 islaut 40121 ispautN 40137 istendo 40798 sn-isghm 42705 rngunsnply 43201 |
| Copyright terms: Public domain | W3C validator |