MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3 Structured version   Visualization version   GIF version

Theorem elab3 3702
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.)
Hypotheses
Ref Expression
elab3.1 (𝜓𝐴𝑉)
elab3.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elab3
StepHypRef Expression
1 elab3.1 . 2 (𝜓𝐴𝑉)
2 elab3.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32elab3g 3701 . 2 ((𝜓𝐴𝑉) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3ax-mp 5 1 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  fvelrnb  6982  elrnmpo  7586  ovelrn  7626  isfi  9036  isnum2  10014  pm54.43lem  10069  isfin3  10365  isfin5  10368  isfin6  10369  genpelv  11069  iswrd  14564  4sqlem2  16996  vdwapval  17020  isghm  19255  isghmOLD  19256  issrng  20867  ellspsn  21024  lspprel  21116  iscss  21724  ellspd  21845  istps  22961  islp  23169  is2ndc  23475  elpt  23601  itg2l  25784  elply  26254  isismt  28560  bj-ififc  36548  isline  39696  ispointN  39699  ispsubsp  39702  ispsubclN  39894  islaut  40040  ispautN  40056  istendo  40717  sn-isghm  42628  rngunsnply  43130
  Copyright terms: Public domain W3C validator