![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elab3g 3687 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 {cab 2711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: fvelrnb 6968 elrnmpo 7568 ovelrn 7608 isfi 9014 isnum2 9982 pm54.43lem 10037 isfin3 10333 isfin5 10336 isfin6 10337 genpelv 11037 iswrd 14550 4sqlem2 16982 vdwapval 17006 isghm 19245 isghmOLD 19246 issrng 20861 ellspsn 21018 lspprel 21110 iscss 21718 ellspd 21839 istps 22955 islp 23163 is2ndc 23469 elpt 23595 itg2l 25778 elply 26248 isismt 28556 bj-ififc 36564 isline 39721 ispointN 39724 ispsubsp 39727 ispsubclN 39919 islaut 40065 ispautN 40081 istendo 40742 sn-isghm 42659 rngunsnply 43157 |
Copyright terms: Public domain | W3C validator |