Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
elab3.1 | ⊢ (𝜓 → 𝐴 ∈ 𝑉) |
elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ 𝑉) | |
2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elab3g 3609 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝑉) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: fvelrnb 6812 elrnmpo 7388 ovelrn 7426 isfi 8719 isnum2 9634 pm54.43lem 9689 isfin3 9983 isfin5 9986 isfin6 9987 genpelv 10687 iswrd 14147 4sqlem2 16578 vdwapval 16602 isghm 18749 issrng 20025 lspsnel 20180 lspprel 20271 iscss 20800 ellspd 20919 istps 21991 islp 22199 is2ndc 22505 elpt 22631 itg2l 24799 elply 25261 isismt 26799 bj-ififc 34690 isline 37680 ispointN 37683 ispsubsp 37686 ispsubclN 37878 islaut 38024 ispautN 38040 istendo 38701 rngunsnply 40914 |
Copyright terms: Public domain | W3C validator |