Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtrALT Structured version   Visualization version   GIF version

Theorem bj-rabtrALT 35098
Description: Alternate proof of bj-rabtr 35097. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rabtrALT {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtrALT
StepHypRef Expression
1 nfrab1 3315 . . 3 𝑥{𝑥𝐴 ∣ ⊤}
2 nfcv 2908 . . 3 𝑥𝐴
31, 2cleqf 2939 . 2 ({𝑥𝐴 ∣ ⊤} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑥𝐴))
4 tru 1545 . . 3
5 rabid 3308 . . 3 (𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ (𝑥𝐴 ∧ ⊤))
64, 5mpbiran2 706 . 2 (𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑥𝐴)
73, 6mpgbir 1805 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wtru 1542  wcel 2109  {crab 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator