Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtrALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-rabtr 35166. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-rabtrALT | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3336 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ⊤} | |
2 | nfcv 2905 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | cleqf 2936 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ 𝑥 ∈ 𝐴)) |
4 | tru 1543 | . . 3 ⊢ ⊤ | |
5 | rabid 3329 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝑥 ∈ 𝐴 ∧ ⊤)) | |
6 | 4, 5 | mpbiran2 708 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ 𝑥 ∈ 𝐴) |
7 | 3, 6 | mpgbir 1799 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 {crab 3303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rab 3306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |