Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtrALT Structured version   Visualization version   GIF version

Theorem bj-rabtrALT 35806
Description: Alternate proof of bj-rabtr 35805. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rabtrALT {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtrALT
StepHypRef Expression
1 nfrab1 3451 . . 3 𝑥{𝑥𝐴 ∣ ⊤}
2 nfcv 2903 . . 3 𝑥𝐴
31, 2cleqf 2934 . 2 ({𝑥𝐴 ∣ ⊤} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑥𝐴))
4 tru 1545 . . 3
5 rabid 3452 . . 3 (𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ (𝑥𝐴 ∧ ⊤))
64, 5mpbiran2 708 . 2 (𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑥𝐴)
73, 6mpgbir 1801 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wtru 1542  wcel 2106  {crab 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator