Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtrALT Structured version   Visualization version   GIF version

Theorem bj-rabtrALT 35257
Description: Alternate proof of bj-rabtr 35256. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rabtrALT {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtrALT
StepHypRef Expression
1 nfrab1 3422 . . 3 𝑥{𝑥𝐴 ∣ ⊤}
2 nfcv 2904 . . 3 𝑥𝐴
31, 2cleqf 2935 . 2 ({𝑥𝐴 ∣ ⊤} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑥𝐴))
4 tru 1544 . . 3
5 rabid 3423 . . 3 (𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ (𝑥𝐴 ∧ ⊤))
64, 5mpbiran2 707 . 2 (𝑥 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑥𝐴)
73, 6mpgbir 1800 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wtru 1541  wcel 2105  {crab 3403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-rab 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator