| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtrAUTO | Structured version Visualization version GIF version | ||
| Description: Proof of bj-rabtr 36948 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-rabtrAUTO | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4055 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
| 2 | ssid 3981 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ⊆ 𝐴) |
| 4 | simpl 482 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → ⊤) | |
| 5 | 3, 4 | ssrabdv 4049 | . . 3 ⊢ (⊤ → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤}) |
| 6 | 5 | mptru 1547 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
| 7 | 1, 6 | eqssi 3975 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-ss 3943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |