Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtrAUTO Structured version   Visualization version   GIF version

Theorem bj-rabtrAUTO 35168
Description: Proof of bj-rabtr 35166 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rabtrAUTO {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtrAUTO
StepHypRef Expression
1 ssrab2 4019 . 2 {𝑥𝐴 ∣ ⊤} ⊆ 𝐴
2 ssid 3948 . . . . 5 𝐴𝐴
32a1i 11 . . . 4 (⊤ → 𝐴𝐴)
4 simpl 484 . . . 4 ((⊤ ∧ 𝑥𝐴) → ⊤)
53, 4ssrabdv 4013 . . 3 (⊤ → 𝐴 ⊆ {𝑥𝐴 ∣ ⊤})
65mptru 1546 . 2 𝐴 ⊆ {𝑥𝐴 ∣ ⊤}
71, 6eqssi 3942 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2104  {crab 3330  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rab 3333  df-v 3439  df-in 3899  df-ss 3909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator