![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtrAUTO | Structured version Visualization version GIF version |
Description: Proof of bj-rabtr 36113 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-rabtrAUTO | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4076 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
2 | ssid 4003 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ⊆ 𝐴) |
4 | simpl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → ⊤) | |
5 | 3, 4 | ssrabdv 4070 | . . 3 ⊢ (⊤ → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤}) |
6 | 5 | mptru 1546 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | 1, 6 | eqssi 3997 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 {crab 3430 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |