![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtrAUTO | Structured version Visualization version GIF version |
Description: Proof of bj-rabtr 35798 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-rabtrAUTO | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4076 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
2 | ssid 4003 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ⊆ 𝐴) |
4 | simpl 483 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → ⊤) | |
5 | 3, 4 | ssrabdv 4070 | . . 3 ⊢ (⊤ → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤}) |
6 | 5 | mptru 1548 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | 1, 6 | eqssi 3997 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 {crab 3432 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-in 3954 df-ss 3964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |