Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sselpwuni Structured version   Visualization version   GIF version

Theorem bj-sselpwuni 35150
Description: Quantitative version of ssexg 5242: a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-sselpwuni ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)

Proof of Theorem bj-sselpwuni
StepHypRef Expression
1 ssexg 5242 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 ssuni 4863 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 𝑉)
31, 2elpwd 4538 1 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837
This theorem is referenced by:  bj-unirel  35151
  Copyright terms: Public domain W3C validator