Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sselpwuni Structured version   Visualization version   GIF version

Theorem bj-sselpwuni 37068
Description: Quantitative version of ssexg 5293: a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-sselpwuni ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)

Proof of Theorem bj-sselpwuni
StepHypRef Expression
1 ssexg 5293 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 ssuni 4908 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 𝑉)
31, 2elpwd 4581 1 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3459  wss 3926  𝒫 cpw 4575   cuni 4883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-pw 4577  df-uni 4884
This theorem is referenced by:  bj-unirel  37069
  Copyright terms: Public domain W3C validator