Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sselpwuni Structured version   Visualization version   GIF version

Theorem bj-sselpwuni 37045
Description: Quantitative version of ssexg 5281: a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-sselpwuni ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)

Proof of Theorem bj-sselpwuni
StepHypRef Expression
1 ssexg 5281 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 ssuni 4899 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 𝑉)
31, 2elpwd 4572 1 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-uni 4875
This theorem is referenced by:  bj-unirel  37046
  Copyright terms: Public domain W3C validator