Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sselpwuni Structured version   Visualization version   GIF version

Theorem bj-sselpwuni 37016
Description: Quantitative version of ssexg 5341: a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-sselpwuni ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)

Proof of Theorem bj-sselpwuni
StepHypRef Expression
1 ssexg 5341 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 ssuni 4956 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴 𝑉)
31, 2elpwd 4628 1 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624  df-uni 4932
This theorem is referenced by:  bj-unirel  37017
  Copyright terms: Public domain W3C validator