Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unirel Structured version   Visualization version   GIF version

Theorem bj-unirel 36439
Description: Quantitative version of uniexr 7747: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-unirel ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝑉)

Proof of Theorem bj-unirel
StepHypRef Expression
1 pwuni 4942 . . 3 𝐴 ⊆ 𝒫 𝐴
2 pwel 5372 . . 3 ( 𝐴𝑉 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝑉)
3 bj-sselpwuni 36438 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ 𝒫 𝒫 𝑉) → 𝐴 ∈ 𝒫 𝒫 𝒫 𝑉)
41, 2, 3sylancr 586 . 2 ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝒫 𝑉)
5 unipw 5443 . . 3 𝒫 𝒫 𝑉 = 𝒫 𝑉
65pweqi 4613 . 2 𝒫 𝒫 𝒫 𝑉 = 𝒫 𝒫 𝑉
74, 6eleqtrdi 2837 1 ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3943  𝒫 cpw 4597   cuni 4902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-un 3948  df-in 3950  df-ss 3960  df-pw 4599  df-sn 4624  df-pr 4626  df-uni 4903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator