Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unirel Structured version   Visualization version   GIF version

Theorem bj-unirel 37046
Description: Quantitative version of uniexr 7742: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-unirel ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝑉)

Proof of Theorem bj-unirel
StepHypRef Expression
1 pwuni 4912 . . 3 𝐴 ⊆ 𝒫 𝐴
2 pwel 5339 . . 3 ( 𝐴𝑉 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝑉)
3 bj-sselpwuni 37045 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ 𝒫 𝒫 𝑉) → 𝐴 ∈ 𝒫 𝒫 𝒫 𝑉)
41, 2, 3sylancr 587 . 2 ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝒫 𝑉)
5 unipw 5413 . . 3 𝒫 𝒫 𝑉 = 𝒫 𝑉
65pweqi 4582 . 2 𝒫 𝒫 𝒫 𝑉 = 𝒫 𝒫 𝑉
74, 6eleqtrdi 2839 1 ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3917  𝒫 cpw 4566   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-un 3922  df-in 3924  df-ss 3934  df-pw 4568  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator