Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unirel Structured version   Visualization version   GIF version

Theorem bj-unirel 35920
Description: Quantitative version of uniexr 7746: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.)
Assertion
Ref Expression
bj-unirel ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝑉)

Proof of Theorem bj-unirel
StepHypRef Expression
1 pwuni 4948 . . 3 𝐴 ⊆ 𝒫 𝐴
2 pwel 5378 . . 3 ( 𝐴𝑉 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝑉)
3 bj-sselpwuni 35919 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ 𝒫 𝒫 𝑉) → 𝐴 ∈ 𝒫 𝒫 𝒫 𝑉)
41, 2, 3sylancr 587 . 2 ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝒫 𝑉)
5 unipw 5449 . . 3 𝒫 𝒫 𝑉 = 𝒫 𝑉
65pweqi 4617 . 2 𝒫 𝒫 𝒫 𝑉 = 𝒫 𝒫 𝑉
74, 6eleqtrdi 2843 1 ( 𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3947  𝒫 cpw 4601   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-pw 4603  df-sn 4628  df-pr 4630  df-uni 4908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator