![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unirel | Structured version Visualization version GIF version |
Description: Quantitative version of uniexr 7798: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
bj-unirel | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4969 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | pwel 5399 | . . 3 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) | |
3 | bj-sselpwuni 37016 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) | |
4 | 1, 2, 3 | sylancr 586 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) |
5 | unipw 5470 | . . 3 ⊢ ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 ∪ 𝑉 | |
6 | 5 | pweqi 4638 | . 2 ⊢ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 𝒫 ∪ 𝑉 |
7 | 4, 6 | eleqtrdi 2854 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |