![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unirel | Structured version Visualization version GIF version |
Description: Quantitative version of uniexr 7746: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
bj-unirel | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4948 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | pwel 5378 | . . 3 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) | |
3 | bj-sselpwuni 35919 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) | |
4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) |
5 | unipw 5449 | . . 3 ⊢ ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 ∪ 𝑉 | |
6 | 5 | pweqi 4617 | . 2 ⊢ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 𝒫 ∪ 𝑉 |
7 | 4, 6 | eleqtrdi 2843 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-un 3952 df-in 3954 df-ss 3964 df-pw 4603 df-sn 4628 df-pr 4630 df-uni 4908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |