Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unirel | Structured version Visualization version GIF version |
Description: Quantitative version of uniexr 7604: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
bj-unirel | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4883 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | pwel 5307 | . . 3 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) | |
3 | bj-sselpwuni 35202 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) | |
4 | 1, 2, 3 | sylancr 586 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) |
5 | unipw 5368 | . . 3 ⊢ ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 ∪ 𝑉 | |
6 | 5 | pweqi 4556 | . 2 ⊢ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 𝒫 ∪ 𝑉 |
7 | 4, 6 | eleqtrdi 2850 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3891 𝒫 cpw 4538 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-sn 4567 df-pr 4569 df-uni 4845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |