| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unirel | Structured version Visualization version GIF version | ||
| Description: Quantitative version of uniexr 7696: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| bj-unirel | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4894 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | pwel 5317 | . . 3 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) | |
| 3 | bj-sselpwuni 37092 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉) |
| 5 | unipw 5389 | . . 3 ⊢ ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 ∪ 𝑉 | |
| 6 | 5 | pweqi 4563 | . 2 ⊢ 𝒫 ∪ 𝒫 𝒫 ∪ 𝑉 = 𝒫 𝒫 ∪ 𝑉 |
| 7 | 4, 6 | eleqtrdi 2841 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |