| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| ssuni | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunii 4911 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝑥 ∈ ∪ 𝐶) | |
| 2 | 1 | expcom 413 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝐶)) |
| 3 | 2 | imim2d 57 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐶))) |
| 4 | 3 | alimdv 1915 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐶))) |
| 5 | df-ss 3967 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | df-ss 3967 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐶)) | |
| 7 | 4, 5, 6 | 3imtr4g 296 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊆ ∪ 𝐶)) |
| 8 | 7 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ⊆ wss 3950 ∪ cuni 4906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3967 df-uni 4907 |
| This theorem is referenced by: elssuni 4936 uniss2 4940 ssorduni 7800 filssufilg 23920 alexsubALTlem2 24057 utoptop 24244 locfinreflem 33840 bj-sselpwuni 37052 setrec1 49265 |
| Copyright terms: Public domain | W3C validator |