![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssuni | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
ssuni | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunii 4936 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝑥 ∈ ∪ 𝐶) | |
2 | 1 | expcom 413 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝐶)) |
3 | 2 | imim2d 57 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐶))) |
4 | 3 | alimdv 1915 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐶))) |
5 | df-ss 3993 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | df-ss 3993 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐶)) | |
7 | 4, 5, 6 | 3imtr4g 296 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊆ ∪ 𝐶)) |
8 | 7 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: elssuni 4961 uniss2 4965 ssorduni 7814 filssufilg 23940 alexsubALTlem2 24077 utoptop 24264 locfinreflem 33786 bj-sselpwuni 37016 setrec1 48783 |
Copyright terms: Public domain | W3C validator |