MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssuni Structured version   Visualization version   GIF version

Theorem ssuni 4896
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elunii 4876 . . . . . 6 ((𝑥𝐵𝐵𝐶) → 𝑥 𝐶)
21expcom 413 . . . . 5 (𝐵𝐶 → (𝑥𝐵𝑥 𝐶))
32imim2d 57 . . . 4 (𝐵𝐶 → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥 𝐶)))
43alimdv 1916 . . 3 (𝐵𝐶 → (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥(𝑥𝐴𝑥 𝐶)))
5 df-ss 3931 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
6 df-ss 3931 . . 3 (𝐴 𝐶 ↔ ∀𝑥(𝑥𝐴𝑥 𝐶))
74, 5, 63imtr4g 296 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
87impcom 407 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  wss 3914   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-uni 4872
This theorem is referenced by:  elssuni  4901  uniss2  4905  ssorduni  7755  filssufilg  23798  alexsubALTlem2  23935  utoptop  24122  locfinreflem  33830  bj-sselpwuni  37038  setrec1  49680
  Copyright terms: Public domain W3C validator