MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssuni Structured version   Visualization version   GIF version

Theorem ssuni 4956
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elunii 4936 . . . . . 6 ((𝑥𝐵𝐵𝐶) → 𝑥 𝐶)
21expcom 413 . . . . 5 (𝐵𝐶 → (𝑥𝐵𝑥 𝐶))
32imim2d 57 . . . 4 (𝐵𝐶 → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥 𝐶)))
43alimdv 1915 . . 3 (𝐵𝐶 → (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥(𝑥𝐴𝑥 𝐶)))
5 df-ss 3993 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
6 df-ss 3993 . . 3 (𝐴 𝐶 ↔ ∀𝑥(𝑥𝐴𝑥 𝐶))
74, 5, 63imtr4g 296 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
87impcom 407 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wcel 2108  wss 3976   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932
This theorem is referenced by:  elssuni  4961  uniss2  4965  ssorduni  7814  filssufilg  23940  alexsubALTlem2  24077  utoptop  24264  locfinreflem  33786  bj-sselpwuni  37016  setrec1  48783
  Copyright terms: Public domain W3C validator