MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssuni Structured version   Visualization version   GIF version

Theorem ssuni 4931
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elunii 4911 . . . . . 6 ((𝑥𝐵𝐵𝐶) → 𝑥 𝐶)
21expcom 413 . . . . 5 (𝐵𝐶 → (𝑥𝐵𝑥 𝐶))
32imim2d 57 . . . 4 (𝐵𝐶 → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥 𝐶)))
43alimdv 1915 . . 3 (𝐵𝐶 → (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥(𝑥𝐴𝑥 𝐶)))
5 df-ss 3967 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
6 df-ss 3967 . . 3 (𝐴 𝐶 ↔ ∀𝑥(𝑥𝐴𝑥 𝐶))
74, 5, 63imtr4g 296 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
87impcom 407 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2107  wss 3950   cuni 4906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-ss 3967  df-uni 4907
This theorem is referenced by:  elssuni  4936  uniss2  4940  ssorduni  7800  filssufilg  23920  alexsubALTlem2  24057  utoptop  24244  locfinreflem  33840  bj-sselpwuni  37052  setrec1  49265
  Copyright terms: Public domain W3C validator