Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1415 Structured version   Visualization version   GIF version

Theorem bnj1415 31924
Description: Technical lemma for bnj60 31948. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1415.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1415.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1415.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1415.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1415.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1415.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1415.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1415.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1415.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1415.10 𝑃 = 𝐻
Assertion
Ref Expression
bnj1415 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝐵,𝑓   𝑦,𝐶   𝑦,𝐷   𝑅,𝑓,𝑥,𝑦   𝑓,𝑑,𝑥   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑓,𝑑)   𝐴(𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑑)   𝐺(𝑥,𝑦,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1415
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1415.7 . . . 4 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
2 bnj1415.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
32simplbi 498 . . . 4 (𝜓𝑅 FrSe 𝐴)
41, 3bnj835 31647 . . 3 (𝜒𝑅 FrSe 𝐴)
5 bnj1415.5 . . . 4 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
65, 1bnj1212 31688 . . 3 (𝜒𝑥𝐴)
7 eqid 2795 . . . 4 ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
87bnj1414 31923 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
94, 6, 8syl2anc 584 . 2 (𝜒 → trCl(𝑥, 𝐴, 𝑅) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
10 iunun 4914 . . . 4 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = ( 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
11 iunid 4883 . . . . 5 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} = pred(𝑥, 𝐴, 𝑅)
1211uneq1i 4056 . . . 4 ( 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1310, 12eqtri 2819 . . 3 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
14 bnj1415.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
15 bnj1415.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
16 bnj1415.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
17 bnj1415.4 . . . 4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
18 bnj1415.8 . . . 4 (𝜏′[𝑦 / 𝑥]𝜏)
19 bnj1415.9 . . . 4 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
20 bnj1415.10 . . . 4 𝑃 = 𝐻
21 biid 262 . . . 4 ((𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
22 biid 262 . . . 4 (((𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
2314, 15, 16, 17, 5, 2, 1, 18, 19, 20, 21, 22bnj1398 31920 . . 3 (𝜒 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃)
2413, 23syl5eqr 2845 . 2 (𝜒 → ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃)
259, 24eqtr2d 2832 1 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wne 2984  wral 3105  wrex 3106  {crab 3109  [wsbc 3706  cun 3857  wss 3859  c0 4211  {csn 4472  cop 4478   cuni 4745   ciun 4825   class class class wbr 4962  dom cdm 5443  cres 5445   Fn wfn 6220  cfv 6225   predc-bnj14 31575   FrSe w-bnj15 31579   trClc-bnj18 31581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-reg 8902  ax-inf2 8950
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-1o 7953  df-bnj17 31574  df-bnj14 31576  df-bnj13 31578  df-bnj15 31580  df-bnj18 31582  df-bnj19 31584
This theorem is referenced by:  bnj1312  31944
  Copyright terms: Public domain W3C validator