![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1415 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33902. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1415.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1415.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1415.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1415.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1415.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1415.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1415.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1415.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1415.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1415.10 | ⊢ 𝑃 = ∪ 𝐻 |
Ref | Expression |
---|---|
bnj1415 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1415.7 | . . . 4 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
2 | bnj1415.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
3 | 2 | simplbi 498 | . . . 4 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
4 | 1, 3 | bnj835 33599 | . . 3 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
5 | bnj1415.5 | . . . 4 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
6 | 5, 1 | bnj1212 33639 | . . 3 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
7 | eqid 2731 | . . . 4 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
8 | 7 | bnj1414 33877 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → trCl(𝑥, 𝐴, 𝑅) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
9 | 4, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜒 → trCl(𝑥, 𝐴, 𝑅) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
10 | iunun 5089 | . . . 4 ⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = (∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
11 | iunid 5056 | . . . . 5 ⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} = pred(𝑥, 𝐴, 𝑅) | |
12 | 11 | uneq1i 4155 | . . . 4 ⊢ (∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) |
13 | 10, 12 | eqtri 2759 | . . 3 ⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) |
14 | bnj1415.1 | . . . 4 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
15 | bnj1415.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
16 | bnj1415.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
17 | bnj1415.4 | . . . 4 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
18 | bnj1415.8 | . . . 4 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
19 | bnj1415.9 | . . . 4 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
20 | bnj1415.10 | . . . 4 ⊢ 𝑃 = ∪ 𝐻 | |
21 | biid 260 | . . . 4 ⊢ ((𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
22 | biid 260 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
23 | 14, 15, 16, 17, 5, 2, 1, 18, 19, 20, 21, 22 | bnj1398 33874 | . . 3 ⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) |
24 | 13, 23 | eqtr3id 2785 | . 2 ⊢ (𝜒 → ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) |
25 | 9, 24 | eqtr2d 2772 | 1 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2708 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3431 [wsbc 3773 ∪ cun 3942 ⊆ wss 3944 ∅c0 4318 {csn 4622 〈cop 4628 ∪ cuni 4901 ∪ ciun 4990 class class class wbr 5141 dom cdm 5669 ↾ cres 5671 Fn wfn 6527 ‘cfv 6532 predc-bnj14 33528 FrSe w-bnj15 33532 trClc-bnj18 33534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-reg 9569 ax-inf2 9618 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-om 7839 df-1o 8448 df-bnj17 33527 df-bnj14 33529 df-bnj13 33531 df-bnj15 33533 df-bnj18 33535 df-bnj19 33537 |
This theorem is referenced by: bnj1312 33898 |
Copyright terms: Public domain | W3C validator |