| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1415 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35076. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1415.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1415.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1415.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1415.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1415.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1415.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1415.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1415.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1415.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1415.10 | ⊢ 𝑃 = ∪ 𝐻 |
| Ref | Expression |
|---|---|
| bnj1415 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1415.7 | . . . 4 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 2 | bnj1415.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 3 | 2 | simplbi 497 | . . . 4 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
| 4 | 1, 3 | bnj835 34773 | . . 3 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
| 5 | bnj1415.5 | . . . 4 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 6 | 5, 1 | bnj1212 34813 | . . 3 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
| 7 | eqid 2737 | . . . 4 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
| 8 | 7 | bnj1414 35051 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → trCl(𝑥, 𝐴, 𝑅) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
| 9 | 4, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜒 → trCl(𝑥, 𝐴, 𝑅) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
| 10 | iunun 5093 | . . . 4 ⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = (∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
| 11 | iunid 5060 | . . . . 5 ⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} = pred(𝑥, 𝐴, 𝑅) | |
| 12 | 11 | uneq1i 4164 | . . . 4 ⊢ (∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅){𝑦} ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) |
| 13 | 10, 12 | eqtri 2765 | . . 3 ⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) |
| 14 | bnj1415.1 | . . . 4 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 15 | bnj1415.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 16 | bnj1415.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 17 | bnj1415.4 | . . . 4 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 18 | bnj1415.8 | . . . 4 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
| 19 | bnj1415.9 | . . . 4 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 20 | bnj1415.10 | . . . 4 ⊢ 𝑃 = ∪ 𝐻 | |
| 21 | biid 261 | . . . 4 ⊢ ((𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
| 22 | biid 261 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
| 23 | 14, 15, 16, 17, 5, 2, 1, 18, 19, 20, 21, 22 | bnj1398 35048 | . . 3 ⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) |
| 24 | 13, 23 | eqtr3id 2791 | . 2 ⊢ (𝜒 → ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) |
| 25 | 9, 24 | eqtr2d 2778 | 1 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 [wsbc 3788 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 {csn 4626 〈cop 4632 ∪ cuni 4907 ∪ ciun 4991 class class class wbr 5143 dom cdm 5685 ↾ cres 5687 Fn wfn 6556 ‘cfv 6561 predc-bnj14 34702 FrSe w-bnj15 34706 trClc-bnj18 34708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-bnj17 34701 df-bnj14 34703 df-bnj13 34705 df-bnj15 34707 df-bnj18 34709 df-bnj19 34711 |
| This theorem is referenced by: bnj1312 35072 |
| Copyright terms: Public domain | W3C validator |