Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Structured version   Visualization version   GIF version

Theorem bnj97 32746
Description: Technical lemma for bnj150 32756. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj97 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 32743 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 0ex 5226 . . . . 5 ∅ ∈ V
32bnj519 32615 . . . 4 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
4 bnj96.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54funeqi 6439 . . . 4 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
63, 5sylibr 233 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹)
71, 6syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
8 opex 5373 . . . 4 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ V
98snid 4594 . . 3 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
109, 4eleqtrri 2838 . 2 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹
11 funopfv 6803 . 2 (Fun 𝐹 → (⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)))
127, 10, 11mpisyl 21 1 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  cop 4564  Fun wfun 6412  cfv 6418   predc-bnj14 32567   FrSe w-bnj15 32571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-bnj13 32570  df-bnj15 32572
This theorem is referenced by:  bnj150  32756
  Copyright terms: Public domain W3C validator