Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Structured version   Visualization version   GIF version

Theorem bnj97 32359
Description: Technical lemma for bnj150 32369. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj97 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 32356 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 0ex 5178 . . . . 5 ∅ ∈ V
32bnj519 32227 . . . 4 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
4 bnj96.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54funeqi 6357 . . . 4 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
63, 5sylibr 237 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹)
71, 6syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
8 opex 5325 . . . 4 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ V
98snid 4559 . . 3 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
109, 4eleqtrri 2852 . 2 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹
11 funopfv 6706 . 2 (Fun 𝐹 → (⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)))
127, 10, 11mpisyl 21 1 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3410  c0 4226  {csn 4523  cop 4529  Fun wfun 6330  cfv 6336   predc-bnj14 32179   FrSe w-bnj15 32183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-bnj13 32182  df-bnj15 32184
This theorem is referenced by:  bnj150  32369
  Copyright terms: Public domain W3C validator