Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj97 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 32856. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj97 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 32843 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | bnj519 32715 | . . . 4 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
4 | bnj96.1 | . . . . 5 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | funeqi 6455 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
6 | 3, 5 | sylibr 233 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹) |
7 | 1, 6 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
8 | opex 5379 | . . . 4 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ V | |
9 | 8 | snid 4597 | . . 3 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
10 | 9, 4 | eleqtrri 2838 | . 2 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ 𝐹 |
11 | funopfv 6821 | . 2 ⊢ (Fun 𝐹 → (〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))) | |
12 | 7, 10, 11 | mpisyl 21 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 Fun wfun 6427 ‘cfv 6433 predc-bnj14 32667 FrSe w-bnj15 32671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-bnj13 32670 df-bnj15 32672 |
This theorem is referenced by: bnj150 32856 |
Copyright terms: Public domain | W3C validator |