Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Structured version   Visualization version   GIF version

Theorem bnj97 34839
Description: Technical lemma for bnj150 34849. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj97 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 34836 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 0ex 5287 . . . . 5 ∅ ∈ V
32bnj519 34709 . . . 4 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
4 bnj96.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54funeqi 6567 . . . 4 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
63, 5sylibr 234 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹)
71, 6syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
8 opex 5449 . . . 4 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ V
98snid 4642 . . 3 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
109, 4eleqtrri 2832 . 2 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹
11 funopfv 6938 . 2 (Fun 𝐹 → (⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)))
127, 10, 11mpisyl 21 1 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  {csn 4606  cop 4612  Fun wfun 6535  cfv 6541   predc-bnj14 34661   FrSe w-bnj15 34665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-bnj13 34664  df-bnj15 34666
This theorem is referenced by:  bnj150  34849
  Copyright terms: Public domain W3C validator