| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj97 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj150 34872. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| Ref | Expression |
|---|---|
| bnj97 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj93 34859 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
| 2 | 0ex 5264 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 2 | bnj519 34732 | . . . 4 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
| 4 | bnj96.1 | . . . . 5 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 5 | 4 | funeqi 6539 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
| 6 | 3, 5 | sylibr 234 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
| 8 | opex 5426 | . . . 4 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ V | |
| 9 | 8 | snid 4628 | . . 3 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| 10 | 9, 4 | eleqtrri 2828 | . 2 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ 𝐹 |
| 11 | funopfv 6912 | . 2 ⊢ (Fun 𝐹 → (〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))) | |
| 12 | 7, 10, 11 | mpisyl 21 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4298 {csn 4591 〈cop 4597 Fun wfun 6507 ‘cfv 6513 predc-bnj14 34684 FrSe w-bnj15 34688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-bnj13 34687 df-bnj15 34689 |
| This theorem is referenced by: bnj150 34872 |
| Copyright terms: Public domain | W3C validator |