Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Visualization version   GIF version

Theorem bnj95 32557
Description: Technical lemma for bnj124 32564. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj95 𝐹 ∈ V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
2 snex 5324 . 2 {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} ∈ V
31, 2eqeltri 2834 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  Vcvv 3408  c0 4237  {csn 4541  cop 4547   predc-bnj14 32379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-sn 4542  df-pr 4544
This theorem is referenced by:  bnj124  32564  bnj125  32565  bnj126  32566  bnj150  32569
  Copyright terms: Public domain W3C validator