![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj95 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj124 33870. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj95.1 | ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} |
Ref | Expression |
---|---|
bnj95 | ⊢ 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj95.1 | . 2 ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} | |
2 | snex 5430 | . 2 ⊢ {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} ∈ V | |
3 | 1, 2 | eqeltri 2829 | 1 ⊢ 𝐹 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 {csn 4627 ⟨cop 4633 predc-bnj14 33687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-nul 4322 df-sn 4628 df-pr 4630 |
This theorem is referenced by: bnj124 33870 bnj125 33871 bnj126 33872 bnj150 33875 |
Copyright terms: Public domain | W3C validator |