Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Visualization version   GIF version

Theorem bnj95 31480
Description: Technical lemma for bnj124 31487. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj95 𝐹 ∈ V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
2 snex 5129 . 2 {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} ∈ V
31, 2eqeltri 2902 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  Vcvv 3414  c0 4144  {csn 4397  cop 4403   predc-bnj14 31303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-v 3416  df-dif 3801  df-un 3803  df-nul 4145  df-sn 4398  df-pr 4400
This theorem is referenced by:  bnj124  31487  bnj125  31488  bnj126  31489  bnj150  31492
  Copyright terms: Public domain W3C validator