| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj95 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj124 34868. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj95.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| Ref | Expression |
|---|---|
| bnj95 | ⊢ 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj95.1 | . 2 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 2 | snex 5394 | . 2 ⊢ {〈∅, pred(𝑥, 𝐴, 𝑅)〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ 𝐹 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 〈cop 4598 predc-bnj14 34685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: bnj124 34868 bnj125 34869 bnj126 34870 bnj150 34873 |
| Copyright terms: Public domain | W3C validator |