Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Visualization version   GIF version

Theorem bnj95 34861
Description: Technical lemma for bnj124 34868. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj95 𝐹 ∈ V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
2 snex 5394 . 2 {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} ∈ V
31, 2eqeltri 2825 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  cop 4598   predc-bnj14 34685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-pr 4595
This theorem is referenced by:  bnj124  34868  bnj125  34869  bnj126  34870  bnj150  34873
  Copyright terms: Public domain W3C validator