![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj95 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj124 34400. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj95.1 | ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} |
Ref | Expression |
---|---|
bnj95 | ⊢ 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj95.1 | . 2 ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} | |
2 | snex 5422 | . 2 ⊢ {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} ∈ V | |
3 | 1, 2 | eqeltri 2821 | 1 ⊢ 𝐹 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4315 {csn 4621 ⟨cop 4627 predc-bnj14 34217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-un 3946 df-nul 4316 df-sn 4622 df-pr 4624 |
This theorem is referenced by: bnj124 34400 bnj125 34401 bnj126 34402 bnj150 34405 |
Copyright terms: Public domain | W3C validator |