Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1148 | Structured version Visualization version GIF version |
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1148 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2819 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 = 𝑋) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 𝑥 = 𝑋) |
3 | bnj93 32949 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
4 | eleq1 2825 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
5 | 4 | anbi2d 629 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴))) |
6 | bnj602 33001 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅)) | |
7 | 6 | eleq1d 2822 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ( pred(𝑥, 𝐴, 𝑅) ∈ V ↔ pred(𝑋, 𝐴, 𝑅) ∈ V)) |
8 | 5, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))) |
9 | 3, 8 | mpbii 232 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)) |
10 | 2, 9 | bnj593 32831 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)) |
11 | 10 | bnj937 32857 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)) |
12 | 11 | pm2.43i 52 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 predc-bnj14 32773 FrSe w-bnj15 32777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-bnj14 32774 df-bnj13 32776 df-bnj15 32778 |
This theorem is referenced by: bnj1136 33083 bnj1413 33121 |
Copyright terms: Public domain | W3C validator |