Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1148 Structured version   Visualization version   GIF version

Theorem bnj1148 32378
 Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1148 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)

Proof of Theorem bnj1148
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 3452 . . . . 5 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 485 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
3 bnj93 32245 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
4 eleq1 2877 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
54anbi2d 631 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
6 bnj602 32297 . . . . . . 7 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
76eleq1d 2874 . . . . . 6 (𝑥 = 𝑋 → ( pred(𝑥, 𝐴, 𝑅) ∈ V ↔ pred(𝑋, 𝐴, 𝑅) ∈ V))
85, 7imbi12d 348 . . . . 5 (𝑥 = 𝑋 → (((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)))
93, 8mpbii 236 . . . 4 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
102, 9bnj593 32126 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
1110bnj937 32153 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
1211pm2.43i 52 1 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3441   predc-bnj14 32068   FrSe w-bnj15 32072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-rab 3115  df-v 3443  df-un 3886  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-bnj14 32069  df-bnj13 32071  df-bnj15 32073 This theorem is referenced by:  bnj1136  32379  bnj1413  32417
 Copyright terms: Public domain W3C validator