Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1148 Structured version   Visualization version   GIF version

Theorem bnj1148 33021
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1148 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)

Proof of Theorem bnj1148
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 2818 . . . . 5 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 483 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
3 bnj93 32888 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
4 eleq1 2824 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
54anbi2d 630 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
6 bnj602 32940 . . . . . . 7 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
76eleq1d 2821 . . . . . 6 (𝑥 = 𝑋 → ( pred(𝑥, 𝐴, 𝑅) ∈ V ↔ pred(𝑋, 𝐴, 𝑅) ∈ V))
85, 7imbi12d 345 . . . . 5 (𝑥 = 𝑋 → (((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)))
93, 8mpbii 232 . . . 4 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
102, 9bnj593 32770 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
1110bnj937 32796 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
1211pm2.43i 52 1 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  Vcvv 3437   predc-bnj14 32712   FrSe w-bnj15 32716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-bnj14 32713  df-bnj13 32715  df-bnj15 32717
This theorem is referenced by:  bnj1136  33022  bnj1413  33060
  Copyright terms: Public domain W3C validator