![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1148 | Structured version Visualization version GIF version |
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1148 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2821 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 = 𝑋) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 𝑥 = 𝑋) |
3 | bnj93 34856 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
4 | eleq1 2827 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
5 | 4 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴))) |
6 | bnj602 34908 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅)) | |
7 | 6 | eleq1d 2824 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ( pred(𝑥, 𝐴, 𝑅) ∈ V ↔ pred(𝑋, 𝐴, 𝑅) ∈ V)) |
8 | 5, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))) |
9 | 3, 8 | mpbii 233 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)) |
10 | 2, 9 | bnj593 34738 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)) |
11 | 10 | bnj937 34764 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)) |
12 | 11 | pm2.43i 52 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 predc-bnj14 34681 FrSe w-bnj15 34685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-bnj14 34682 df-bnj13 34684 df-bnj15 34686 |
This theorem is referenced by: bnj1136 34990 bnj1413 35028 |
Copyright terms: Public domain | W3C validator |