Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj96 Structured version   Visualization version   GIF version

Theorem bnj96 34862
Description: Technical lemma for bnj150 34873. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj96 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj96
StepHypRef Expression
1 bnj93 34860 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 dmsnopg 6189 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
31, 2syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
4 bnj96.1 . . 3 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54dmeqi 5871 . 2 dom 𝐹 = dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
6 df1o2 8444 . 2 1o = {∅}
73, 5, 63eqtr4g 2790 1 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  cop 4598  dom cdm 5641  1oc1o 8430   predc-bnj14 34685   FrSe w-bnj15 34689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-dm 5651  df-suc 6341  df-1o 8437  df-bnj13 34688  df-bnj15 34690
This theorem is referenced by:  bnj150  34873
  Copyright terms: Public domain W3C validator