Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj96 Structured version   Visualization version   GIF version

Theorem bnj96 31258
Description: Technical lemma for bnj150 31269. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj96 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1𝑜)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj96
StepHypRef Expression
1 bnj93 31256 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 dmsnopg 5818 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
31, 2syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
4 bnj96.1 . . 3 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54dmeqi 5526 . 2 dom 𝐹 = dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
6 df1o2 7809 . 2 1𝑜 = {∅}
73, 5, 63eqtr4g 2865 1 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  Vcvv 3391  c0 4116  {csn 4370  cop 4376  dom cdm 5311  1𝑜c1o 7789   predc-bnj14 31079   FrSe w-bnj15 31083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rab 3105  df-v 3393  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-br 4845  df-dm 5321  df-suc 5942  df-1o 7796  df-bnj13 31082  df-bnj15 31084
This theorem is referenced by:  bnj150  31269
  Copyright terms: Public domain W3C validator