Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj96 Structured version   Visualization version   GIF version

Theorem bnj96 32310
 Description: Technical lemma for bnj150 32321. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj96 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj96
StepHypRef Expression
1 bnj93 32308 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 dmsnopg 6040 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
31, 2syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
4 bnj96.1 . . 3 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54dmeqi 5742 . 2 dom 𝐹 = dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
6 df1o2 8114 . 2 1o = {∅}
73, 5, 63eqtr4g 2858 1 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ∅c0 4245  {csn 4527  ⟨cop 4533  dom cdm 5522  1oc1o 8093   predc-bnj14 32131   FrSe w-bnj15 32135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-v 3443  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4246  df-if 4428  df-sn 4528  df-pr 4530  df-op 4534  df-br 5034  df-dm 5532  df-suc 6170  df-1o 8100  df-bnj13 32134  df-bnj15 32136 This theorem is referenced by:  bnj150  32321
 Copyright terms: Public domain W3C validator