Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj96 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 32569. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj96 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 32556 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | dmsnopg 6076 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) |
4 | bnj96.1 | . . 3 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | dmeqi 5773 | . 2 ⊢ dom 𝐹 = dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
6 | df1o2 8214 | . 2 ⊢ 1o = {∅} | |
7 | 3, 5, 6 | 3eqtr4g 2803 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 {csn 4541 〈cop 4547 dom cdm 5551 1oc1o 8195 predc-bnj14 32379 FrSe w-bnj15 32383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-dm 5561 df-suc 6219 df-1o 8202 df-bnj13 32382 df-bnj15 32384 |
This theorem is referenced by: bnj150 32569 |
Copyright terms: Public domain | W3C validator |