![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj96 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 34852. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj96 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 34839 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | dmsnopg 6244 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) |
4 | bnj96.1 | . . 3 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | dmeqi 5929 | . 2 ⊢ dom 𝐹 = dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
6 | df1o2 8529 | . 2 ⊢ 1o = {∅} | |
7 | 3, 5, 6 | 3eqtr4g 2805 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 〈cop 4654 dom cdm 5700 1oc1o 8515 predc-bnj14 34664 FrSe w-bnj15 34668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 df-suc 6401 df-1o 8522 df-bnj13 34667 df-bnj15 34669 |
This theorem is referenced by: bnj150 34852 |
Copyright terms: Public domain | W3C validator |