![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj96 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 34351. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} |
Ref | Expression |
---|---|
bnj96 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 34338 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | dmsnopg 6212 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅}) |
4 | bnj96.1 | . . 3 ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} | |
5 | 4 | dmeqi 5904 | . 2 ⊢ dom 𝐹 = dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} |
6 | df1o2 8479 | . 2 ⊢ 1o = {∅} | |
7 | 3, 5, 6 | 3eqtr4g 2796 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {csn 4628 ⟨cop 4634 dom cdm 5676 1oc1o 8465 predc-bnj14 34163 FrSe w-bnj15 34167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-dm 5686 df-suc 6370 df-1o 8472 df-bnj13 34166 df-bnj15 34168 |
This theorem is referenced by: bnj150 34351 |
Copyright terms: Public domain | W3C validator |