Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj96 Structured version   Visualization version   GIF version

Theorem bnj96 31781
 Description: Technical lemma for bnj150 31792. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj96 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj96
StepHypRef Expression
1 bnj93 31779 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 dmsnopg 5909 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
31, 2syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {∅})
4 bnj96.1 . . 3 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54dmeqi 5623 . 2 dom 𝐹 = dom {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
6 df1o2 7918 . 2 1o = {∅}
73, 5, 63eqtr4g 2840 1 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 387   = wceq 1507   ∈ wcel 2050  Vcvv 3416  ∅c0 4179  {csn 4441  ⟨cop 4447  dom cdm 5407  1oc1o 7898   predc-bnj14 31603   FrSe w-bnj15 31607 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ral 3094  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-dm 5417  df-suc 6035  df-1o 7905  df-bnj13 31606  df-bnj15 31608 This theorem is referenced by:  bnj150  31792
 Copyright terms: Public domain W3C validator