Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj96 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 32756. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj96 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 32743 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | dmsnopg 6105 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) |
4 | bnj96.1 | . . 3 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | dmeqi 5802 | . 2 ⊢ dom 𝐹 = dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
6 | df1o2 8279 | . 2 ⊢ 1o = {∅} | |
7 | 3, 5, 6 | 3eqtr4g 2804 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 〈cop 4564 dom cdm 5580 1oc1o 8260 predc-bnj14 32567 FrSe w-bnj15 32571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 df-suc 6257 df-1o 8267 df-bnj13 32570 df-bnj15 32572 |
This theorem is referenced by: bnj150 32756 |
Copyright terms: Public domain | W3C validator |