Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj149 Structured version   Visualization version   GIF version

Theorem bnj149 33874
Description: Technical lemma for bnj151 33876. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj149.1 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj149.2 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj149.3 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj149.4 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj149.5 (𝜓1[𝑔 / 𝑓]𝜓′)
bnj149.6 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj149 𝜃1
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝜁1   𝑔,𝜁0
Allowed substitution hints:   𝜑′(𝑥,𝑓,𝑔)   𝜓′(𝑥,𝑓,𝑔)   𝜁0(𝑥,𝑓)   𝜑1(𝑥,𝑓,𝑔)   𝜓1(𝑥,𝑓,𝑔)   𝜃1(𝑥,𝑓,𝑔)   𝜁1(𝑥,𝑔)

Proof of Theorem bnj149
StepHypRef Expression
1 simpr1 1194 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn 1o)
2 df1o2 8469 . . . . . . . . 9 1o = {∅}
32fneq2i 6644 . . . . . . . 8 (𝑓 Fn 1o𝑓 Fn {∅})
41, 3sylib 217 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn {∅})
5 simpr2 1195 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝜑′)
6 bnj149.6 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
75, 6sylib 217 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
8 fvex 6901 . . . . . . . . . 10 (𝑓‘∅) ∈ V
98elsn 4642 . . . . . . . . 9 ((𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
107, 9sylibr 233 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
11 0ex 5306 . . . . . . . . 9 ∅ ∈ V
12 fveq2 6888 . . . . . . . . . 10 (𝑔 = ∅ → (𝑓𝑔) = (𝑓‘∅))
1312eleq1d 2818 . . . . . . . . 9 (𝑔 = ∅ → ((𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)}))
1411, 13ralsn 4684 . . . . . . . 8 (∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
1510, 14sylibr 233 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)})
16 ffnfv 7114 . . . . . . 7 (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓 Fn {∅} ∧ ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)}))
174, 15, 16sylanbrc 583 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)})
18 bnj93 33862 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
1918adantr 481 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → pred(𝑥, 𝐴, 𝑅) ∈ V)
20 fsng 7131 . . . . . . 7 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2111, 19, 20sylancr 587 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2217, 21mpbid 231 . . . . 5 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
2322ex 413 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → ((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2423alrimiv 1930 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
25 mo2icl 3709 . . 3 (∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
27 bnj149.1 . 2 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
2826, 27mpbir 230 1 𝜃1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  ∃*wmo 2532  wral 3061  Vcvv 3474  [wsbc 3776  c0 4321  {csn 4627  cop 4633   Fn wfn 6535  wf 6536  cfv 6540  1oc1o 8455   predc-bnj14 33687   FrSe w-bnj15 33691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1o 8462  df-bnj13 33690  df-bnj15 33692
This theorem is referenced by:  bnj151  33876
  Copyright terms: Public domain W3C validator