Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj149 Structured version   Visualization version   GIF version

Theorem bnj149 33886
Description: Technical lemma for bnj151 33888. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj149.1 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj149.2 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj149.3 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj149.4 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj149.5 (𝜓1[𝑔 / 𝑓]𝜓′)
bnj149.6 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj149 𝜃1
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝜁1   𝑔,𝜁0
Allowed substitution hints:   𝜑′(𝑥,𝑓,𝑔)   𝜓′(𝑥,𝑓,𝑔)   𝜁0(𝑥,𝑓)   𝜑1(𝑥,𝑓,𝑔)   𝜓1(𝑥,𝑓,𝑔)   𝜃1(𝑥,𝑓,𝑔)   𝜁1(𝑥,𝑔)

Proof of Theorem bnj149
StepHypRef Expression
1 simpr1 1195 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn 1o)
2 df1o2 8473 . . . . . . . . 9 1o = {∅}
32fneq2i 6648 . . . . . . . 8 (𝑓 Fn 1o𝑓 Fn {∅})
41, 3sylib 217 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn {∅})
5 simpr2 1196 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝜑′)
6 bnj149.6 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
75, 6sylib 217 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
8 fvex 6905 . . . . . . . . . 10 (𝑓‘∅) ∈ V
98elsn 4644 . . . . . . . . 9 ((𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
107, 9sylibr 233 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
11 0ex 5308 . . . . . . . . 9 ∅ ∈ V
12 fveq2 6892 . . . . . . . . . 10 (𝑔 = ∅ → (𝑓𝑔) = (𝑓‘∅))
1312eleq1d 2819 . . . . . . . . 9 (𝑔 = ∅ → ((𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)}))
1411, 13ralsn 4686 . . . . . . . 8 (∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
1510, 14sylibr 233 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)})
16 ffnfv 7118 . . . . . . 7 (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓 Fn {∅} ∧ ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)}))
174, 15, 16sylanbrc 584 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)})
18 bnj93 33874 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
1918adantr 482 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → pred(𝑥, 𝐴, 𝑅) ∈ V)
20 fsng 7135 . . . . . . 7 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2111, 19, 20sylancr 588 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2217, 21mpbid 231 . . . . 5 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
2322ex 414 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → ((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2423alrimiv 1931 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
25 mo2icl 3711 . . 3 (∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
27 bnj149.1 . 2 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
2826, 27mpbir 230 1 𝜃1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  ∃*wmo 2533  wral 3062  Vcvv 3475  [wsbc 3778  c0 4323  {csn 4629  cop 4635   Fn wfn 6539  wf 6540  cfv 6544  1oc1o 8459   predc-bnj14 33699   FrSe w-bnj15 33703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1o 8466  df-bnj13 33702  df-bnj15 33704
This theorem is referenced by:  bnj151  33888
  Copyright terms: Public domain W3C validator