Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj149 Structured version   Visualization version   GIF version

Theorem bnj149 32257
Description: Technical lemma for bnj151 32259. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj149.1 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj149.2 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj149.3 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj149.4 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj149.5 (𝜓1[𝑔 / 𝑓]𝜓′)
bnj149.6 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj149 𝜃1
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝜁1   𝑔,𝜁0
Allowed substitution hints:   𝜑′(𝑥,𝑓,𝑔)   𝜓′(𝑥,𝑓,𝑔)   𝜁0(𝑥,𝑓)   𝜑1(𝑥,𝑓,𝑔)   𝜓1(𝑥,𝑓,𝑔)   𝜃1(𝑥,𝑓,𝑔)   𝜁1(𝑥,𝑔)

Proof of Theorem bnj149
StepHypRef Expression
1 simpr1 1191 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn 1o)
2 df1o2 8099 . . . . . . . . 9 1o = {∅}
32fneq2i 6421 . . . . . . . 8 (𝑓 Fn 1o𝑓 Fn {∅})
41, 3sylib 221 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn {∅})
5 simpr2 1192 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝜑′)
6 bnj149.6 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
75, 6sylib 221 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
8 fvex 6658 . . . . . . . . . 10 (𝑓‘∅) ∈ V
98elsn 4540 . . . . . . . . 9 ((𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
107, 9sylibr 237 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
11 0ex 5175 . . . . . . . . 9 ∅ ∈ V
12 fveq2 6645 . . . . . . . . . 10 (𝑔 = ∅ → (𝑓𝑔) = (𝑓‘∅))
1312eleq1d 2874 . . . . . . . . 9 (𝑔 = ∅ → ((𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)}))
1411, 13ralsn 4579 . . . . . . . 8 (∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
1510, 14sylibr 237 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)})
16 ffnfv 6859 . . . . . . 7 (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓 Fn {∅} ∧ ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)}))
174, 15, 16sylanbrc 586 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)})
18 bnj93 32245 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
1918adantr 484 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → pred(𝑥, 𝐴, 𝑅) ∈ V)
20 fsng 6876 . . . . . . 7 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2111, 19, 20sylancr 590 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2217, 21mpbid 235 . . . . 5 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
2322ex 416 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → ((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2423alrimiv 1928 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
25 mo2icl 3653 . . 3 (∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
27 bnj149.1 . 2 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
2826, 27mpbir 234 1 𝜃1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  ∃*wmo 2596  wral 3106  Vcvv 3441  [wsbc 3720  c0 4243  {csn 4525  cop 4531   Fn wfn 6319  wf 6320  cfv 6324  1oc1o 8078   predc-bnj14 32068   FrSe w-bnj15 32072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-reu 3113  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-bnj13 32071  df-bnj15 32073
This theorem is referenced by:  bnj151  32259
  Copyright terms: Public domain W3C validator