Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj930 Structured version   Visualization version   GIF version

Theorem bnj930 32462
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj930.1 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
bnj930 (𝜑 → Fun 𝐹)

Proof of Theorem bnj930
StepHypRef Expression
1 bnj930.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfun 6479 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6374   Fn wfn 6375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-fn 6383
This theorem is referenced by:  bnj945  32466  bnj545  32588  bnj548  32590  bnj553  32591  bnj570  32598  bnj929  32629  bnj966  32637  bnj1442  32742  bnj1450  32743  bnj1501  32760
  Copyright terms: Public domain W3C validator