| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj553 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34918. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj553.1 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj553.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj553.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj553.4 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
| bnj553.5 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| bnj553.6 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| bnj553.7 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| bnj553.8 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
| bnj553.9 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj553.10 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj553.11 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| bnj553.12 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
| Ref | Expression |
|---|---|
| bnj553 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj553.12 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
| 2 | 1 | fnfund 6622 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
| 3 | opex 5427 | . . . . . . 7 ⊢ 〈𝑚, 𝐶〉 ∈ V | |
| 4 | 3 | snid 4629 | . . . . . 6 ⊢ 〈𝑚, 𝐶〉 ∈ {〈𝑚, 𝐶〉} |
| 5 | elun2 4149 | . . . . . 6 ⊢ (〈𝑚, 𝐶〉 ∈ {〈𝑚, 𝐶〉} → 〈𝑚, 𝐶〉 ∈ (𝑓 ∪ {〈𝑚, 𝐶〉})) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 〈𝑚, 𝐶〉 ∈ (𝑓 ∪ {〈𝑚, 𝐶〉}) |
| 7 | bnj553.8 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
| 8 | 6, 7 | eleqtrri 2828 | . . . 4 ⊢ 〈𝑚, 𝐶〉 ∈ 𝐺 |
| 9 | funopfv 6913 | . . . 4 ⊢ (Fun 𝐺 → (〈𝑚, 𝐶〉 ∈ 𝐺 → (𝐺‘𝑚) = 𝐶)) | |
| 10 | 2, 8, 9 | mpisyl 21 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝐺‘𝑚) = 𝐶) |
| 11 | 10 | 3ad2ant1 1133 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐶) |
| 12 | fveq2 6861 | . . . . . 6 ⊢ (𝑝 = 𝑖 → (𝐺‘𝑝) = (𝐺‘𝑖)) | |
| 13 | 12 | bnj1113 34782 | . . . . 5 ⊢ (𝑝 = 𝑖 → ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 14 | bnj553.11 | . . . . 5 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
| 15 | bnj553.10 | . . . . 5 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 16 | 13, 14, 15 | 3eqtr4g 2790 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐿 = 𝐾) |
| 17 | 16 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐿 = 𝐾) |
| 18 | bnj553.5 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
| 19 | bnj553.9 | . . . . 5 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 20 | bnj553.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) | |
| 21 | 18, 19, 15, 20, 1 | bnj548 34894 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
| 22 | 21 | 3adant3 1132 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐵 = 𝐾) |
| 23 | fveq2 6861 | . . . . . 6 ⊢ (𝑝 = 𝑖 → (𝑓‘𝑝) = (𝑓‘𝑖)) | |
| 24 | 23 | bnj1113 34782 | . . . . 5 ⊢ (𝑝 = 𝑖 → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 25 | bnj553.7 | . . . . . . 7 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
| 26 | 19, 25 | eqeq12i 2748 | . . . . . 6 ⊢ (𝐵 = 𝐶 ↔ ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)) |
| 27 | eqcom 2737 | . . . . . 6 ⊢ (∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ↔ ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
| 28 | 26, 27 | bitri 275 | . . . . 5 ⊢ (𝐵 = 𝐶 ↔ ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 29 | 24, 28 | sylibr 234 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐵 = 𝐶) |
| 30 | 29 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐵 = 𝐶) |
| 31 | 17, 22, 30 | 3eqtr2rd 2772 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐶 = 𝐿) |
| 32 | 11, 31 | eqtrd 2765 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ∪ cun 3915 ∅c0 4299 {csn 4592 〈cop 4598 ∪ ciun 4958 suc csuc 6337 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 ωcom 7845 predc-bnj14 34685 FrSe w-bnj15 34689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: bnj557 34898 |
| Copyright terms: Public domain | W3C validator |