Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj553 Structured version   Visualization version   GIF version

Theorem bnj553 34205
Description: Technical lemma for bnj852 34228. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj553.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj553.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj553.3 𝐷 = (ω ∖ {∅})
bnj553.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj553.5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj553.6 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj553.7 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj553.8 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj553.9 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj553.10 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj553.11 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj553.12 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj553 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐿)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj553
StepHypRef Expression
1 bnj553.12 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
21fnfund 6651 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
3 opex 5465 . . . . . . 7 𝑚, 𝐶⟩ ∈ V
43snid 4665 . . . . . 6 𝑚, 𝐶⟩ ∈ {⟨𝑚, 𝐶⟩}
5 elun2 4178 . . . . . 6 (⟨𝑚, 𝐶⟩ ∈ {⟨𝑚, 𝐶⟩} → ⟨𝑚, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑚, 𝐶⟩}))
64, 5ax-mp 5 . . . . 5 𝑚, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑚, 𝐶⟩})
7 bnj553.8 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
86, 7eleqtrri 2830 . . . 4 𝑚, 𝐶⟩ ∈ 𝐺
9 funopfv 6944 . . . 4 (Fun 𝐺 → (⟨𝑚, 𝐶⟩ ∈ 𝐺 → (𝐺𝑚) = 𝐶))
102, 8, 9mpisyl 21 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝐺𝑚) = 𝐶)
11103ad2ant1 1131 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐶)
12 fveq2 6892 . . . . . 6 (𝑝 = 𝑖 → (𝐺𝑝) = (𝐺𝑖))
1312bnj1113 34092 . . . . 5 (𝑝 = 𝑖 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
14 bnj553.11 . . . . 5 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
15 bnj553.10 . . . . 5 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
1613, 14, 153eqtr4g 2795 . . . 4 (𝑝 = 𝑖𝐿 = 𝐾)
17163ad2ant3 1133 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐿 = 𝐾)
18 bnj553.5 . . . . 5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
19 bnj553.9 . . . . 5 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
20 bnj553.4 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
2118, 19, 15, 20, 1bnj548 34204 . . . 4 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
22213adant3 1130 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐵 = 𝐾)
23 fveq2 6892 . . . . . 6 (𝑝 = 𝑖 → (𝑓𝑝) = (𝑓𝑖))
2423bnj1113 34092 . . . . 5 (𝑝 = 𝑖 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
25 bnj553.7 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
2619, 25eqeq12i 2748 . . . . . 6 (𝐵 = 𝐶 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅))
27 eqcom 2737 . . . . . 6 ( 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ↔ 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2826, 27bitri 274 . . . . 5 (𝐵 = 𝐶 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2924, 28sylibr 233 . . . 4 (𝑝 = 𝑖𝐵 = 𝐶)
30293ad2ant3 1133 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐵 = 𝐶)
3117, 22, 303eqtr2rd 2777 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐶 = 𝐿)
3211, 31eqtrd 2770 1 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2104  wral 3059  cdif 3946  cun 3947  c0 4323  {csn 4629  cop 4635   ciun 4998  suc csuc 6367  Fun wfun 6538   Fn wfn 6539  cfv 6544  ωcom 7859   predc-bnj14 33995   FrSe w-bnj15 33999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  bnj557  34208
  Copyright terms: Public domain W3C validator