![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj553 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34228. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj553.1 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj553.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj553.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj553.4 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) |
bnj553.5 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj553.6 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj553.7 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj553.8 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩}) |
bnj553.9 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj553.10 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj553.11 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj553.12 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj553 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj553.12 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
2 | 1 | fnfund 6651 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
3 | opex 5465 | . . . . . . 7 ⊢ ⟨𝑚, 𝐶⟩ ∈ V | |
4 | 3 | snid 4665 | . . . . . 6 ⊢ ⟨𝑚, 𝐶⟩ ∈ {⟨𝑚, 𝐶⟩} |
5 | elun2 4178 | . . . . . 6 ⊢ (⟨𝑚, 𝐶⟩ ∈ {⟨𝑚, 𝐶⟩} → ⟨𝑚, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑚, 𝐶⟩})) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ ⟨𝑚, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑚, 𝐶⟩}) |
7 | bnj553.8 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩}) | |
8 | 6, 7 | eleqtrri 2830 | . . . 4 ⊢ ⟨𝑚, 𝐶⟩ ∈ 𝐺 |
9 | funopfv 6944 | . . . 4 ⊢ (Fun 𝐺 → (⟨𝑚, 𝐶⟩ ∈ 𝐺 → (𝐺‘𝑚) = 𝐶)) | |
10 | 2, 8, 9 | mpisyl 21 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝐺‘𝑚) = 𝐶) |
11 | 10 | 3ad2ant1 1131 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐶) |
12 | fveq2 6892 | . . . . . 6 ⊢ (𝑝 = 𝑖 → (𝐺‘𝑝) = (𝐺‘𝑖)) | |
13 | 12 | bnj1113 34092 | . . . . 5 ⊢ (𝑝 = 𝑖 → ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
14 | bnj553.11 | . . . . 5 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
15 | bnj553.10 | . . . . 5 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
16 | 13, 14, 15 | 3eqtr4g 2795 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐿 = 𝐾) |
17 | 16 | 3ad2ant3 1133 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐿 = 𝐾) |
18 | bnj553.5 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
19 | bnj553.9 | . . . . 5 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
20 | bnj553.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) | |
21 | 18, 19, 15, 20, 1 | bnj548 34204 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
22 | 21 | 3adant3 1130 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐵 = 𝐾) |
23 | fveq2 6892 | . . . . . 6 ⊢ (𝑝 = 𝑖 → (𝑓‘𝑝) = (𝑓‘𝑖)) | |
24 | 23 | bnj1113 34092 | . . . . 5 ⊢ (𝑝 = 𝑖 → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
25 | bnj553.7 | . . . . . . 7 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
26 | 19, 25 | eqeq12i 2748 | . . . . . 6 ⊢ (𝐵 = 𝐶 ↔ ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)) |
27 | eqcom 2737 | . . . . . 6 ⊢ (∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ↔ ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
28 | 26, 27 | bitri 274 | . . . . 5 ⊢ (𝐵 = 𝐶 ↔ ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
29 | 24, 28 | sylibr 233 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐵 = 𝐶) |
30 | 29 | 3ad2ant3 1133 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐵 = 𝐶) |
31 | 17, 22, 30 | 3eqtr2rd 2777 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → 𝐶 = 𝐿) |
32 | 11, 31 | eqtrd 2770 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∖ cdif 3946 ∪ cun 3947 ∅c0 4323 {csn 4629 ⟨cop 4635 ∪ ciun 4998 suc csuc 6367 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 ωcom 7859 predc-bnj14 33995 FrSe w-bnj15 33999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: bnj557 34208 |
Copyright terms: Public domain | W3C validator |