Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj545 Structured version   Visualization version   GIF version

Theorem bnj545 33507
Description: Technical lemma for bnj852 33533. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj545.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj545.2 𝐷 = (ω ∖ {∅})
bnj545.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj545.4 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj545.5 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj545.6 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
bnj545.7 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj545 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)

Proof of Theorem bnj545
StepHypRef Expression
1 bnj545.4 . . . . . . . . . 10 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
21simp1bi 1145 . . . . . . . . 9 (𝜏𝑓 Fn 𝑚)
3 bnj545.5 . . . . . . . . . 10 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
43simp1bi 1145 . . . . . . . . 9 (𝜎𝑚𝐷)
52, 4anim12i 613 . . . . . . . 8 ((𝜏𝜎) → (𝑓 Fn 𝑚𝑚𝐷))
653adant1 1130 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑓 Fn 𝑚𝑚𝐷))
7 bnj545.2 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
87bnj529 33353 . . . . . . . 8 (𝑚𝐷 → ∅ ∈ 𝑚)
9 fndm 6605 . . . . . . . 8 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
10 eleq2 2826 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑚))
1110biimparc 480 . . . . . . . 8 ((∅ ∈ 𝑚 ∧ dom 𝑓 = 𝑚) → ∅ ∈ dom 𝑓)
128, 9, 11syl2anr 597 . . . . . . 7 ((𝑓 Fn 𝑚𝑚𝐷) → ∅ ∈ dom 𝑓)
136, 12syl 17 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → ∅ ∈ dom 𝑓)
14 bnj545.6 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
1514fnfund 6603 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
1613, 15jca 512 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜎) → (∅ ∈ dom 𝑓 ∧ Fun 𝐺))
17 bnj545.3 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
1817bnj931 33382 . . . . 5 𝑓𝐺
1916, 18jctil 520 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
20 df-3an 1089 . . . . 5 ((∅ ∈ dom 𝑓 ∧ Fun 𝐺𝑓𝐺) ↔ ((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓𝐺))
21 3anrot 1100 . . . . 5 ((∅ ∈ dom 𝑓 ∧ Fun 𝐺𝑓𝐺) ↔ (Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓))
22 ancom 461 . . . . 5 (((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓𝐺) ↔ (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
2320, 21, 223bitr3i 300 . . . 4 ((Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓) ↔ (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
2419, 23sylibr 233 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → (Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓))
25 funssfv 6863 . . 3 ((Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓) → (𝐺‘∅) = (𝑓‘∅))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝐺‘∅) = (𝑓‘∅))
271simp2bi 1146 . . 3 (𝜏𝜑′)
28273ad2ant2 1134 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑′)
29 bnj545.1 . . . 4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
30 eqtr 2759 . . . 4 (((𝐺‘∅) = (𝑓‘∅) ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3129, 30sylan2b 594 . . 3 (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
32 bnj545.7 . . 3 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3331, 32sylibr 233 . 2 (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → 𝜑″)
3426, 28, 33syl2anc 584 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cdif 3907  cun 3908  wss 3910  c0 4282  {csn 4586  cop 4592   ciun 4954  dom cdm 5633  suc csuc 6319  Fun wfun 6490   Fn wfn 6491  cfv 6496  ωcom 7802   predc-bnj14 33300   FrSe w-bnj15 33304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-res 5645  df-ord 6320  df-on 6321  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504  df-om 7803
This theorem is referenced by:  bnj600  33531  bnj908  33543
  Copyright terms: Public domain W3C validator