Proof of Theorem bnj545
Step | Hyp | Ref
| Expression |
1 | | bnj545.4 |
. . . . . . . . . 10
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
2 | 1 | simp1bi 1144 |
. . . . . . . . 9
⊢ (𝜏 → 𝑓 Fn 𝑚) |
3 | | bnj545.5 |
. . . . . . . . . 10
⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
4 | 3 | simp1bi 1144 |
. . . . . . . . 9
⊢ (𝜎 → 𝑚 ∈ 𝐷) |
5 | 2, 4 | anim12i 613 |
. . . . . . . 8
⊢ ((𝜏 ∧ 𝜎) → (𝑓 Fn 𝑚 ∧ 𝑚 ∈ 𝐷)) |
6 | 5 | 3adant1 1129 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑓 Fn 𝑚 ∧ 𝑚 ∈ 𝐷)) |
7 | | bnj545.2 |
. . . . . . . . 9
⊢ 𝐷 = (ω ∖
{∅}) |
8 | 7 | bnj529 32721 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐷 → ∅ ∈ 𝑚) |
9 | | fndm 6536 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) |
10 | | eleq2 2827 |
. . . . . . . . 9
⊢ (dom
𝑓 = 𝑚 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑚)) |
11 | 10 | biimparc 480 |
. . . . . . . 8
⊢ ((∅
∈ 𝑚 ∧ dom 𝑓 = 𝑚) → ∅ ∈ dom 𝑓) |
12 | 8, 9, 11 | syl2anr 597 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑚 ∧ 𝑚 ∈ 𝐷) → ∅ ∈ dom 𝑓) |
13 | 6, 12 | syl 17 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∅ ∈ dom 𝑓) |
14 | | bnj545.6 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
15 | 14 | fnfund 6534 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
16 | 13, 15 | jca 512 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (∅ ∈ dom 𝑓 ∧ Fun 𝐺)) |
17 | | bnj545.3 |
. . . . . 6
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
18 | 17 | bnj931 32750 |
. . . . 5
⊢ 𝑓 ⊆ 𝐺 |
19 | 16, 18 | jctil 520 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑓 ⊆ 𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺))) |
20 | | df-3an 1088 |
. . . . 5
⊢ ((∅
∈ dom 𝑓 ∧ Fun
𝐺 ∧ 𝑓 ⊆ 𝐺) ↔ ((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓 ⊆ 𝐺)) |
21 | | 3anrot 1099 |
. . . . 5
⊢ ((∅
∈ dom 𝑓 ∧ Fun
𝐺 ∧ 𝑓 ⊆ 𝐺) ↔ (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ ∅ ∈ dom 𝑓)) |
22 | | ancom 461 |
. . . . 5
⊢
(((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓 ⊆ 𝐺) ↔ (𝑓 ⊆ 𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺))) |
23 | 20, 21, 22 | 3bitr3i 301 |
. . . 4
⊢ ((Fun
𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ ∅ ∈ dom 𝑓) ↔ (𝑓 ⊆ 𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺))) |
24 | 19, 23 | sylibr 233 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ ∅ ∈ dom 𝑓)) |
25 | | funssfv 6795 |
. . 3
⊢ ((Fun
𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ ∅ ∈ dom 𝑓) → (𝐺‘∅) = (𝑓‘∅)) |
26 | 24, 25 | syl 17 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝐺‘∅) = (𝑓‘∅)) |
27 | 1 | simp2bi 1145 |
. . 3
⊢ (𝜏 → 𝜑′) |
28 | 27 | 3ad2ant2 1133 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝜑′) |
29 | | bnj545.1 |
. . . 4
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
30 | | eqtr 2761 |
. . . 4
⊢ (((𝐺‘∅) = (𝑓‘∅) ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
31 | 29, 30 | sylan2b 594 |
. . 3
⊢ (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
32 | | bnj545.7 |
. . 3
⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
33 | 31, 32 | sylibr 233 |
. 2
⊢ (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → 𝜑″) |
34 | 26, 28, 33 | syl2anc 584 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝜑″) |