Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj945 Structured version   Visualization version   GIF version

Theorem bnj945 32753
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj945.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj945 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))

Proof of Theorem bnj945
StepHypRef Expression
1 fndm 6536 . . . . . . 7 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
21ad2antll 726 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → dom 𝑓 = 𝑛)
32eleq2d 2824 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (𝐴 ∈ dom 𝑓𝐴𝑛))
43pm5.32i 575 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
5 bnj945.1 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
65bnj941 32752 . . . . . . . 8 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
76imp 407 . . . . . . 7 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → 𝐺 Fn 𝑝)
87fnfund 6534 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → Fun 𝐺)
95bnj931 32750 . . . . . 6 𝑓𝐺
108, 9jctir 521 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (Fun 𝐺𝑓𝐺))
1110anim1i 615 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
124, 11sylbir 234 . . 3 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
13 df-bnj17 32666 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛))
14 3ancomb 1098 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛))
15 3anass 1094 . . . . . 6 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1614, 15bitri 274 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1716anbi1i 624 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
1813, 17bitri 274 . . 3 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
19 df-3an 1088 . . 3 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) ↔ ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
2012, 18, 193imtr4i 292 . 2 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓))
21 funssfv 6795 . 2 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) → (𝐺𝐴) = (𝑓𝐴))
2220, 21syl 17 1 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  wss 3887  {csn 4561  cop 4567  dom cdm 5589  suc csuc 6268  Fun wfun 6427   Fn wfn 6428  cfv 6433  w-bnj17 32665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-bnj17 32666
This theorem is referenced by:  bnj966  32924  bnj967  32925  bnj1006  32940
  Copyright terms: Public domain W3C validator