Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj945 Structured version   Visualization version   GIF version

Theorem bnj945 32653
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj945.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj945 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))

Proof of Theorem bnj945
StepHypRef Expression
1 fndm 6520 . . . . . . 7 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
21ad2antll 725 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → dom 𝑓 = 𝑛)
32eleq2d 2824 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (𝐴 ∈ dom 𝑓𝐴𝑛))
43pm5.32i 574 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
5 bnj945.1 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
65bnj941 32652 . . . . . . . 8 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
76imp 406 . . . . . . 7 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → 𝐺 Fn 𝑝)
87fnfund 6518 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → Fun 𝐺)
95bnj931 32650 . . . . . 6 𝑓𝐺
108, 9jctir 520 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (Fun 𝐺𝑓𝐺))
1110anim1i 614 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
124, 11sylbir 234 . . 3 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
13 df-bnj17 32566 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛))
14 3ancomb 1097 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛))
15 3anass 1093 . . . . . 6 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1614, 15bitri 274 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1716anbi1i 623 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
1813, 17bitri 274 . . 3 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
19 df-3an 1087 . . 3 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) ↔ ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
2012, 18, 193imtr4i 291 . 2 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓))
21 funssfv 6777 . 2 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) → (𝐺𝐴) = (𝑓𝐴))
2220, 21syl 17 1 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  wss 3883  {csn 4558  cop 4564  dom cdm 5580  suc csuc 6253  Fun wfun 6412   Fn wfn 6413  cfv 6418  w-bnj17 32565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-bnj17 32566
This theorem is referenced by:  bnj966  32824  bnj967  32825  bnj1006  32840
  Copyright terms: Public domain W3C validator