Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj945 Structured version   Visualization version   GIF version

Theorem bnj945 32466
Description: Technical lemma for bnj69 32703. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj945.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj945 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))

Proof of Theorem bnj945
StepHypRef Expression
1 fndm 6481 . . . . . . 7 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
21ad2antll 729 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → dom 𝑓 = 𝑛)
32eleq2d 2823 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (𝐴 ∈ dom 𝑓𝐴𝑛))
43pm5.32i 578 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
5 bnj945.1 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
65bnj941 32465 . . . . . . . 8 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
76imp 410 . . . . . . 7 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → 𝐺 Fn 𝑝)
87bnj930 32462 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → Fun 𝐺)
95bnj931 32463 . . . . . 6 𝑓𝐺
108, 9jctir 524 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (Fun 𝐺𝑓𝐺))
1110anim1i 618 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
124, 11sylbir 238 . . 3 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
13 df-bnj17 32378 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛))
14 3ancomb 1101 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛))
15 3anass 1097 . . . . . 6 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1614, 15bitri 278 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1716anbi1i 627 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
1813, 17bitri 278 . . 3 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
19 df-3an 1091 . . 3 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) ↔ ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
2012, 18, 193imtr4i 295 . 2 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓))
21 funssfv 6738 . 2 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) → (𝐺𝐴) = (𝑓𝐴))
2220, 21syl 17 1 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  wss 3866  {csn 4541  cop 4547  dom cdm 5551  suc csuc 6215  Fun wfun 6374   Fn wfn 6375  cfv 6380  w-bnj17 32377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-reg 9208
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-res 5563  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-fv 6388  df-bnj17 32378
This theorem is referenced by:  bnj966  32637  bnj967  32638  bnj1006  32653
  Copyright terms: Public domain W3C validator