Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj945 Structured version   Visualization version   GIF version

Theorem bnj945 34749
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj945.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj945 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))

Proof of Theorem bnj945
StepHypRef Expression
1 fndm 6682 . . . . . . 7 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
21ad2antll 728 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → dom 𝑓 = 𝑛)
32eleq2d 2830 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (𝐴 ∈ dom 𝑓𝐴𝑛))
43pm5.32i 574 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
5 bnj945.1 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
65bnj941 34748 . . . . . . . 8 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
76imp 406 . . . . . . 7 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → 𝐺 Fn 𝑝)
87fnfund 6680 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → Fun 𝐺)
95bnj931 34746 . . . . . 6 𝑓𝐺
108, 9jctir 520 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (Fun 𝐺𝑓𝐺))
1110anim1i 614 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
124, 11sylbir 235 . . 3 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
13 df-bnj17 34663 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛))
14 3ancomb 1099 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛))
15 3anass 1095 . . . . . 6 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1614, 15bitri 275 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1716anbi1i 623 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
1813, 17bitri 275 . . 3 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
19 df-3an 1089 . . 3 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) ↔ ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
2012, 18, 193imtr4i 292 . 2 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓))
21 funssfv 6941 . 2 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) → (𝐺𝐴) = (𝑓𝐴))
2220, 21syl 17 1 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  {csn 4648  cop 4654  dom cdm 5700  suc csuc 6397  Fun wfun 6567   Fn wfn 6568  cfv 6573  w-bnj17 34662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-bnj17 34663
This theorem is referenced by:  bnj966  34920  bnj967  34921  bnj1006  34936
  Copyright terms: Public domain W3C validator