Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj931 Structured version   Visualization version   GIF version

Theorem bnj931 32321
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj931.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj931 𝐵𝐴

Proof of Theorem bnj931
StepHypRef Expression
1 ssun1 4062 . 2 𝐵 ⊆ (𝐵𝐶)
2 bnj931.1 . 2 𝐴 = (𝐵𝐶)
31, 2sseqtrri 3914 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cun 3841  wss 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-un 3848  df-in 3850  df-ss 3860
This theorem is referenced by:  bnj945  32324  bnj545  32446  bnj548  32448  bnj570  32456  bnj929  32487  bnj1136  32548  bnj1408  32587  bnj1442  32600
  Copyright terms: Public domain W3C validator