Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj931 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj931.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
bnj931 | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4062 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | bnj931.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
3 | 1, 2 | sseqtrri 3914 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3841 ⊆ wss 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-un 3848 df-in 3850 df-ss 3860 |
This theorem is referenced by: bnj945 32324 bnj545 32446 bnj548 32448 bnj570 32456 bnj929 32487 bnj1136 32548 bnj1408 32587 bnj1442 32600 |
Copyright terms: Public domain | W3C validator |