![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj931 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj931.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
bnj931 | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | bnj931.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: bnj945 34749 bnj545 34871 bnj548 34873 bnj570 34881 bnj929 34912 bnj1136 34973 bnj1408 35012 bnj1442 35025 |
Copyright terms: Public domain | W3C validator |