Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj931 Structured version   Visualization version   GIF version

Theorem bnj931 32650
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj931.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj931 𝐵𝐴

Proof of Theorem bnj931
StepHypRef Expression
1 ssun1 4102 . 2 𝐵 ⊆ (𝐵𝐶)
2 bnj931.1 . 2 𝐴 = (𝐵𝐶)
31, 2sseqtrri 3954 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900
This theorem is referenced by:  bnj945  32653  bnj545  32775  bnj548  32777  bnj570  32785  bnj929  32816  bnj1136  32877  bnj1408  32916  bnj1442  32929
  Copyright terms: Public domain W3C validator