![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj931 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj931.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
bnj931 | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4164 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | bnj931.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
3 | 1, 2 | sseqtrri 4011 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3938 ⊆ wss 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 |
This theorem is referenced by: bnj945 34239 bnj545 34361 bnj548 34363 bnj570 34371 bnj929 34402 bnj1136 34463 bnj1408 34502 bnj1442 34515 |
Copyright terms: Public domain | W3C validator |