Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj931 Structured version   Visualization version   GIF version

Theorem bnj931 34763
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj931.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj931 𝐵𝐴

Proof of Theorem bnj931
StepHypRef Expression
1 ssun1 4188 . 2 𝐵 ⊆ (𝐵𝐶)
2 bnj931.1 . 2 𝐴 = (𝐵𝐶)
31, 2sseqtrri 4033 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980
This theorem is referenced by:  bnj945  34766  bnj545  34888  bnj548  34890  bnj570  34898  bnj929  34929  bnj1136  34990  bnj1408  35029  bnj1442  35042
  Copyright terms: Public domain W3C validator