![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj548 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34914. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj548.1 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj548.2 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj548.3 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj548.4 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
bnj548.5 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj548 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj548.5 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
2 | 1 | fnfund 6670 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
3 | 2 | adantr 480 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → Fun 𝐺) |
4 | bnj548.1 | . . . . . . . 8 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
5 | 4 | simp1bi 1144 | . . . . . . 7 ⊢ (𝜏 → 𝑓 Fn 𝑚) |
6 | fndm 6672 | . . . . . . . 8 ⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) | |
7 | eleq2 2828 | . . . . . . . . 9 ⊢ (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚)) | |
8 | 7 | biimpar 477 | . . . . . . . 8 ⊢ ((dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
9 | 6, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
10 | 5, 9 | sylan 580 | . . . . . 6 ⊢ ((𝜏 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
11 | 10 | 3ad2antl2 1185 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
12 | 3, 11 | jca 511 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
13 | bnj548.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
14 | 13 | bnj931 34763 | . . . 4 ⊢ 𝑓 ⊆ 𝐺 |
15 | 12, 14 | jctil 519 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) |
16 | 3anan12 1095 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) | |
17 | 15, 16 | sylibr 234 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
18 | funssfv 6928 | . 2 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) → (𝐺‘𝑖) = (𝑓‘𝑖)) | |
19 | iuneq1 5013 | . . . 4 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
20 | 19 | eqcomd 2741 | . . 3 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
21 | bnj548.2 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
22 | bnj548.3 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
23 | 20, 21, 22 | 3eqtr4g 2800 | . 2 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → 𝐵 = 𝐾) |
24 | 17, 18, 23 | 3syl 18 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 {csn 4631 〈cop 4637 ∪ ciun 4996 dom cdm 5689 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 predc-bnj14 34681 FrSe w-bnj15 34685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: bnj553 34891 |
Copyright terms: Public domain | W3C validator |