Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj548 Structured version   Visualization version   GIF version

Theorem bnj548 31509
Description: Technical lemma for bnj852 31533. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj548.1 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj548.2 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj548.3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj548.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj548.5 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj548 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑓   𝑦,𝑖
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐺(𝑓,𝑖,𝑚,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj548
StepHypRef Expression
1 bnj548.5 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
21bnj930 31382 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
32adantr 474 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → Fun 𝐺)
4 bnj548.1 . . . . . . . 8 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
54simp1bi 1179 . . . . . . 7 (𝜏𝑓 Fn 𝑚)
6 fndm 6227 . . . . . . . 8 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
7 eleq2 2895 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓𝑖𝑚))
87biimpar 471 . . . . . . . 8 ((dom 𝑓 = 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
96, 8sylan 575 . . . . . . 7 ((𝑓 Fn 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
105, 9sylan 575 . . . . . 6 ((𝜏𝑖𝑚) → 𝑖 ∈ dom 𝑓)
11103ad2antl2 1241 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝑖 ∈ dom 𝑓)
123, 11jca 507 . . . 4 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (Fun 𝐺𝑖 ∈ dom 𝑓))
13 bnj548.4 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
1413bnj931 31383 . . . 4 𝑓𝐺
1512, 14jctil 515 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (𝑓𝐺 ∧ (Fun 𝐺𝑖 ∈ dom 𝑓)))
16 3anan12 1121 . . 3 ((Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓) ↔ (𝑓𝐺 ∧ (Fun 𝐺𝑖 ∈ dom 𝑓)))
1715, 16sylibr 226 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓))
18 funssfv 6458 . 2 ((Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓) → (𝐺𝑖) = (𝑓𝑖))
19 iuneq1 4756 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2019eqcomd 2831 . . 3 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
21 bnj548.2 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
22 bnj548.3 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
2320, 21, 223eqtr4g 2886 . 2 ((𝐺𝑖) = (𝑓𝑖) → 𝐵 = 𝐾)
2417, 18, 233syl 18 1 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  cun 3796  wss 3798  {csn 4399  cop 4405   ciun 4742  dom cdm 5346  Fun wfun 6121   Fn wfn 6122  cfv 6127   predc-bnj14 31299   FrSe w-bnj15 31303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-res 5358  df-iota 6090  df-fun 6129  df-fn 6130  df-fv 6135
This theorem is referenced by:  bnj553  31510
  Copyright terms: Public domain W3C validator