![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj548 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34230. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj548.1 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj548.2 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj548.3 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj548.4 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩}) |
bnj548.5 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj548 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj548.5 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
2 | 1 | fnfund 6649 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
3 | 2 | adantr 479 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → Fun 𝐺) |
4 | bnj548.1 | . . . . . . . 8 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
5 | 4 | simp1bi 1143 | . . . . . . 7 ⊢ (𝜏 → 𝑓 Fn 𝑚) |
6 | fndm 6651 | . . . . . . . 8 ⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) | |
7 | eleq2 2820 | . . . . . . . . 9 ⊢ (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚)) | |
8 | 7 | biimpar 476 | . . . . . . . 8 ⊢ ((dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
9 | 6, 8 | sylan 578 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
10 | 5, 9 | sylan 578 | . . . . . 6 ⊢ ((𝜏 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
11 | 10 | 3ad2antl2 1184 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
12 | 3, 11 | jca 510 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
13 | bnj548.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩}) | |
14 | 13 | bnj931 34079 | . . . 4 ⊢ 𝑓 ⊆ 𝐺 |
15 | 12, 14 | jctil 518 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) |
16 | 3anan12 1094 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) | |
17 | 15, 16 | sylibr 233 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
18 | funssfv 6911 | . 2 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) → (𝐺‘𝑖) = (𝑓‘𝑖)) | |
19 | iuneq1 5012 | . . . 4 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
20 | 19 | eqcomd 2736 | . . 3 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
21 | bnj548.2 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
22 | bnj548.3 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
23 | 20, 21, 22 | 3eqtr4g 2795 | . 2 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → 𝐵 = 𝐾) |
24 | 17, 18, 23 | 3syl 18 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∪ cun 3945 ⊆ wss 3947 {csn 4627 ⟨cop 4633 ∪ ciun 4996 dom cdm 5675 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 predc-bnj14 33997 FrSe w-bnj15 34001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: bnj553 34207 |
Copyright terms: Public domain | W3C validator |