| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj548 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34933. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj548.1 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| bnj548.2 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj548.3 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj548.4 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
| bnj548.5 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
| Ref | Expression |
|---|---|
| bnj548 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj548.5 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
| 2 | 1 | fnfund 6582 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → Fun 𝐺) |
| 4 | bnj548.1 | . . . . . . . 8 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
| 5 | 4 | simp1bi 1145 | . . . . . . 7 ⊢ (𝜏 → 𝑓 Fn 𝑚) |
| 6 | fndm 6584 | . . . . . . . 8 ⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) | |
| 7 | eleq2 2820 | . . . . . . . . 9 ⊢ (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚)) | |
| 8 | 7 | biimpar 477 | . . . . . . . 8 ⊢ ((dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 9 | 6, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 10 | 5, 9 | sylan 580 | . . . . . 6 ⊢ ((𝜏 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 11 | 10 | 3ad2antl2 1187 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 12 | 3, 11 | jca 511 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
| 13 | bnj548.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
| 14 | 13 | bnj931 34782 | . . . 4 ⊢ 𝑓 ⊆ 𝐺 |
| 15 | 12, 14 | jctil 519 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) |
| 16 | 3anan12 1095 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) | |
| 17 | 15, 16 | sylibr 234 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
| 18 | funssfv 6843 | . 2 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) → (𝐺‘𝑖) = (𝑓‘𝑖)) | |
| 19 | iuneq1 4956 | . . . 4 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
| 20 | 19 | eqcomd 2737 | . . 3 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 21 | bnj548.2 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 22 | bnj548.3 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 23 | 20, 21, 22 | 3eqtr4g 2791 | . 2 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → 𝐵 = 𝐾) |
| 24 | 17, 18, 23 | 3syl 18 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 {csn 4573 〈cop 4579 ∪ ciun 4939 dom cdm 5614 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 predc-bnj14 34700 FrSe w-bnj15 34704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: bnj553 34910 |
| Copyright terms: Public domain | W3C validator |