![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj548 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 31533. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj548.1 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj548.2 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj548.3 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj548.4 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
bnj548.5 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj548 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj548.5 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
2 | 1 | bnj930 31382 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
3 | 2 | adantr 474 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → Fun 𝐺) |
4 | bnj548.1 | . . . . . . . 8 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
5 | 4 | simp1bi 1179 | . . . . . . 7 ⊢ (𝜏 → 𝑓 Fn 𝑚) |
6 | fndm 6227 | . . . . . . . 8 ⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) | |
7 | eleq2 2895 | . . . . . . . . 9 ⊢ (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚)) | |
8 | 7 | biimpar 471 | . . . . . . . 8 ⊢ ((dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
9 | 6, 8 | sylan 575 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
10 | 5, 9 | sylan 575 | . . . . . 6 ⊢ ((𝜏 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
11 | 10 | 3ad2antl2 1241 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
12 | 3, 11 | jca 507 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
13 | bnj548.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
14 | 13 | bnj931 31383 | . . . 4 ⊢ 𝑓 ⊆ 𝐺 |
15 | 12, 14 | jctil 515 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) |
16 | 3anan12 1121 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) | |
17 | 15, 16 | sylibr 226 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
18 | funssfv 6458 | . 2 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) → (𝐺‘𝑖) = (𝑓‘𝑖)) | |
19 | iuneq1 4756 | . . . 4 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
20 | 19 | eqcomd 2831 | . . 3 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
21 | bnj548.2 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
22 | bnj548.3 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
23 | 20, 21, 22 | 3eqtr4g 2886 | . 2 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → 𝐵 = 𝐾) |
24 | 17, 18, 23 | 3syl 18 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 ⊆ wss 3798 {csn 4399 〈cop 4405 ∪ ciun 4742 dom cdm 5346 Fun wfun 6121 Fn wfn 6122 ‘cfv 6127 predc-bnj14 31299 FrSe w-bnj15 31303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-res 5358 df-iota 6090 df-fun 6129 df-fn 6130 df-fv 6135 |
This theorem is referenced by: bnj553 31510 |
Copyright terms: Public domain | W3C validator |