| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj548 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34957. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj548.1 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| bnj548.2 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj548.3 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj548.4 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
| bnj548.5 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
| Ref | Expression |
|---|---|
| bnj548 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj548.5 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
| 2 | 1 | fnfund 6644 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → Fun 𝐺) |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → Fun 𝐺) |
| 4 | bnj548.1 | . . . . . . . 8 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
| 5 | 4 | simp1bi 1145 | . . . . . . 7 ⊢ (𝜏 → 𝑓 Fn 𝑚) |
| 6 | fndm 6646 | . . . . . . . 8 ⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) | |
| 7 | eleq2 2824 | . . . . . . . . 9 ⊢ (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚)) | |
| 8 | 7 | biimpar 477 | . . . . . . . 8 ⊢ ((dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 9 | 6, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 10 | 5, 9 | sylan 580 | . . . . . 6 ⊢ ((𝜏 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 11 | 10 | 3ad2antl2 1187 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 12 | 3, 11 | jca 511 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
| 13 | bnj548.4 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
| 14 | 13 | bnj931 34806 | . . . 4 ⊢ 𝑓 ⊆ 𝐺 |
| 15 | 12, 14 | jctil 519 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) |
| 16 | 3anan12 1095 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑓 ⊆ 𝐺 ∧ (Fun 𝐺 ∧ 𝑖 ∈ dom 𝑓))) | |
| 17 | 15, 16 | sylibr 234 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → (Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓)) |
| 18 | funssfv 6902 | . 2 ⊢ ((Fun 𝐺 ∧ 𝑓 ⊆ 𝐺 ∧ 𝑖 ∈ dom 𝑓) → (𝐺‘𝑖) = (𝑓‘𝑖)) | |
| 19 | iuneq1 4989 | . . . 4 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
| 20 | 19 | eqcomd 2742 | . . 3 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 21 | bnj548.2 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 22 | bnj548.3 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 23 | 20, 21, 22 | 3eqtr4g 2796 | . 2 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → 𝐵 = 𝐾) |
| 24 | 17, 18, 23 | 3syl 18 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) → 𝐵 = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 {csn 4606 〈cop 4612 ∪ ciun 4972 dom cdm 5659 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 predc-bnj14 34724 FrSe w-bnj15 34728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: bnj553 34934 |
| Copyright terms: Public domain | W3C validator |