Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj548 Structured version   Visualization version   GIF version

Theorem bnj548 33117
Description: Technical lemma for bnj852 33141. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj548.1 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj548.2 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj548.3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj548.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj548.5 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj548 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑓   𝑦,𝑖
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐺(𝑓,𝑖,𝑚,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj548
StepHypRef Expression
1 bnj548.5 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
21fnfund 6580 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
32adantr 481 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → Fun 𝐺)
4 bnj548.1 . . . . . . . 8 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
54simp1bi 1144 . . . . . . 7 (𝜏𝑓 Fn 𝑚)
6 fndm 6582 . . . . . . . 8 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
7 eleq2 2825 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓𝑖𝑚))
87biimpar 478 . . . . . . . 8 ((dom 𝑓 = 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
96, 8sylan 580 . . . . . . 7 ((𝑓 Fn 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
105, 9sylan 580 . . . . . 6 ((𝜏𝑖𝑚) → 𝑖 ∈ dom 𝑓)
11103ad2antl2 1185 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝑖 ∈ dom 𝑓)
123, 11jca 512 . . . 4 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (Fun 𝐺𝑖 ∈ dom 𝑓))
13 bnj548.4 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
1413bnj931 32990 . . . 4 𝑓𝐺
1512, 14jctil 520 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (𝑓𝐺 ∧ (Fun 𝐺𝑖 ∈ dom 𝑓)))
16 3anan12 1095 . . 3 ((Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓) ↔ (𝑓𝐺 ∧ (Fun 𝐺𝑖 ∈ dom 𝑓)))
1715, 16sylibr 233 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓))
18 funssfv 6840 . 2 ((Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓) → (𝐺𝑖) = (𝑓𝑖))
19 iuneq1 4954 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2019eqcomd 2742 . . 3 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
21 bnj548.2 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
22 bnj548.3 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
2320, 21, 223eqtr4g 2801 . 2 ((𝐺𝑖) = (𝑓𝑖) → 𝐵 = 𝐾)
2417, 18, 233syl 18 1 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cun 3895  wss 3897  {csn 4572  cop 4578   ciun 4938  dom cdm 5614  Fun wfun 6467   Fn wfn 6468  cfv 6473   predc-bnj14 32908   FrSe w-bnj15 32912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6425  df-fun 6475  df-fn 6476  df-fv 6481
This theorem is referenced by:  bnj553  33118
  Copyright terms: Public domain W3C validator