Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj548 Structured version   Visualization version   GIF version

Theorem bnj548 32777
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj548.1 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj548.2 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj548.3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj548.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj548.5 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj548 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑓   𝑦,𝑖
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐺(𝑓,𝑖,𝑚,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj548
StepHypRef Expression
1 bnj548.5 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
21fnfund 6518 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
32adantr 480 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → Fun 𝐺)
4 bnj548.1 . . . . . . . 8 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
54simp1bi 1143 . . . . . . 7 (𝜏𝑓 Fn 𝑚)
6 fndm 6520 . . . . . . . 8 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
7 eleq2 2827 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓𝑖𝑚))
87biimpar 477 . . . . . . . 8 ((dom 𝑓 = 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
96, 8sylan 579 . . . . . . 7 ((𝑓 Fn 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
105, 9sylan 579 . . . . . 6 ((𝜏𝑖𝑚) → 𝑖 ∈ dom 𝑓)
11103ad2antl2 1184 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝑖 ∈ dom 𝑓)
123, 11jca 511 . . . 4 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (Fun 𝐺𝑖 ∈ dom 𝑓))
13 bnj548.4 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
1413bnj931 32650 . . . 4 𝑓𝐺
1512, 14jctil 519 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (𝑓𝐺 ∧ (Fun 𝐺𝑖 ∈ dom 𝑓)))
16 3anan12 1094 . . 3 ((Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓) ↔ (𝑓𝐺 ∧ (Fun 𝐺𝑖 ∈ dom 𝑓)))
1715, 16sylibr 233 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → (Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓))
18 funssfv 6777 . 2 ((Fun 𝐺𝑓𝐺𝑖 ∈ dom 𝑓) → (𝐺𝑖) = (𝑓𝑖))
19 iuneq1 4937 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2019eqcomd 2744 . . 3 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
21 bnj548.2 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
22 bnj548.3 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
2320, 21, 223eqtr4g 2804 . 2 ((𝐺𝑖) = (𝑓𝑖) → 𝐵 = 𝐾)
2417, 18, 233syl 18 1 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cun 3881  wss 3883  {csn 4558  cop 4564   ciun 4921  dom cdm 5580  Fun wfun 6412   Fn wfn 6413  cfv 6418   predc-bnj14 32567   FrSe w-bnj15 32571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  bnj553  32778
  Copyright terms: Public domain W3C validator