Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj927 Structured version   Visualization version   GIF version

Theorem bnj927 34745
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj927.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj927.2 𝐶 ∈ V
Assertion
Ref Expression
bnj927 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)

Proof of Theorem bnj927
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝑓 Fn 𝑛)
2 vex 3492 . . . . . 6 𝑛 ∈ V
3 bnj927.2 . . . . . 6 𝐶 ∈ V
42, 3fnsn 6636 . . . . 5 {⟨𝑛, 𝐶⟩} Fn {𝑛}
54a1i 11 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → {⟨𝑛, 𝐶⟩} Fn {𝑛})
6 disjcsn 9673 . . . . 5 (𝑛 ∩ {𝑛}) = ∅
76a1i 11 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅)
81, 5, 7fnund 6694 . . 3 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) Fn (𝑛 ∪ {𝑛}))
9 bnj927.1 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
109fneq1i 6676 . . 3 (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {⟨𝑛, 𝐶⟩}) Fn (𝑛 ∪ {𝑛}))
118, 10sylibr 234 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛}))
12 df-suc 6401 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1312eqeq2i 2753 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
1413biimpi 216 . . . 4 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
1514adantr 480 . . 3 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛}))
1615fneq2d 6673 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝐺 Fn 𝑝𝐺 Fn (𝑛 ∪ {𝑛})))
1711, 16mpbird 257 1 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  c0 4352  {csn 4648  cop 4654  suc csuc 6397   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-suc 6401  df-fun 6575  df-fn 6576
This theorem is referenced by:  bnj941  34748  bnj929  34912
  Copyright terms: Public domain W3C validator