![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj927 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj927.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
bnj927.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
bnj927 | ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑓 Fn 𝑛) | |
2 | vex 3412 | . . . . . 6 ⊢ 𝑛 ∈ V | |
3 | bnj927.2 | . . . . . 6 ⊢ 𝐶 ∈ V | |
4 | 2, 3 | fnsn 6239 | . . . . 5 ⊢ {〈𝑛, 𝐶〉} Fn {𝑛} |
5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → {〈𝑛, 𝐶〉} Fn {𝑛}) |
6 | bnj521 31616 | . . . . 5 ⊢ (𝑛 ∩ {𝑛}) = ∅ | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅) |
8 | fnun 6290 | . . . 4 ⊢ (((𝑓 Fn 𝑛 ∧ {〈𝑛, 𝐶〉} Fn {𝑛}) ∧ (𝑛 ∩ {𝑛}) = ∅) → (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) | |
9 | 1, 5, 7, 8 | syl21anc 825 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) |
10 | bnj927.1 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
11 | 10 | fneq1i 6277 | . . 3 ⊢ (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) |
12 | 9, 11 | sylibr 226 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛})) |
13 | df-suc 6029 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
14 | 13 | eqeq2i 2784 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) |
15 | 14 | biimpi 208 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 = (𝑛 ∪ {𝑛})) |
16 | 15 | adantr 473 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛})) |
17 | 16 | fneq2d 6274 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝐺 Fn 𝑝 ↔ 𝐺 Fn (𝑛 ∪ {𝑛}))) |
18 | 12, 17 | mpbird 249 | 1 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ∪ cun 3823 ∩ cin 3824 ∅c0 4173 {csn 4435 〈cop 4441 suc csuc 6025 Fn wfn 6177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 ax-reg 8843 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-suc 6029 df-fun 6184 df-fn 6185 |
This theorem is referenced by: bnj941 31653 bnj929 31816 |
Copyright terms: Public domain | W3C validator |