| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj927 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj927.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| bnj927.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| bnj927 | ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑓 Fn 𝑛) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑛 ∈ V | |
| 3 | bnj927.2 | . . . . . 6 ⊢ 𝐶 ∈ V | |
| 4 | 2, 3 | fnsn 6539 | . . . . 5 ⊢ {〈𝑛, 𝐶〉} Fn {𝑛} |
| 5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → {〈𝑛, 𝐶〉} Fn {𝑛}) |
| 6 | disjcsn 9493 | . . . . 5 ⊢ (𝑛 ∩ {𝑛}) = ∅ | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅) |
| 8 | 1, 5, 7 | fnund 6596 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) |
| 9 | bnj927.1 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 10 | 9 | fneq1i 6578 | . . 3 ⊢ (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) |
| 11 | 8, 10 | sylibr 234 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛})) |
| 12 | df-suc 6312 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
| 13 | 12 | eqeq2i 2744 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 = (𝑛 ∪ {𝑛})) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛})) |
| 16 | 15 | fneq2d 6575 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝐺 Fn 𝑝 ↔ 𝐺 Fn (𝑛 ∪ {𝑛}))) |
| 17 | 11, 16 | mpbird 257 | 1 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 〈cop 4579 suc csuc 6308 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-suc 6312 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: bnj941 34784 bnj929 34948 |
| Copyright terms: Public domain | W3C validator |