Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj927 Structured version   Visualization version   GIF version

Theorem bnj927 32649
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj927.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj927.2 𝐶 ∈ V
Assertion
Ref Expression
bnj927 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)

Proof of Theorem bnj927
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝑓 Fn 𝑛)
2 vex 3426 . . . . . 6 𝑛 ∈ V
3 bnj927.2 . . . . . 6 𝐶 ∈ V
42, 3fnsn 6476 . . . . 5 {⟨𝑛, 𝐶⟩} Fn {𝑛}
54a1i 11 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → {⟨𝑛, 𝐶⟩} Fn {𝑛})
6 bnj521 32616 . . . . 5 (𝑛 ∩ {𝑛}) = ∅
76a1i 11 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅)
81, 5, 7fnund 6530 . . 3 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) Fn (𝑛 ∪ {𝑛}))
9 bnj927.1 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
109fneq1i 6514 . . 3 (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {⟨𝑛, 𝐶⟩}) Fn (𝑛 ∪ {𝑛}))
118, 10sylibr 233 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛}))
12 df-suc 6257 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1312eqeq2i 2751 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
1413biimpi 215 . . . 4 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
1514adantr 480 . . 3 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛}))
1615fneq2d 6511 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝐺 Fn 𝑝𝐺 Fn (𝑛 ∪ {𝑛})))
1711, 16mpbird 256 1 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558  cop 4564  suc csuc 6253   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-suc 6257  df-fun 6420  df-fn 6421
This theorem is referenced by:  bnj941  32652  bnj929  32816
  Copyright terms: Public domain W3C validator