Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj927 Structured version   Visualization version   GIF version

Theorem bnj927 32749
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj927.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj927.2 𝐶 ∈ V
Assertion
Ref Expression
bnj927 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)

Proof of Theorem bnj927
StepHypRef Expression
1 simpr 485 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝑓 Fn 𝑛)
2 vex 3436 . . . . . 6 𝑛 ∈ V
3 bnj927.2 . . . . . 6 𝐶 ∈ V
42, 3fnsn 6492 . . . . 5 {⟨𝑛, 𝐶⟩} Fn {𝑛}
54a1i 11 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → {⟨𝑛, 𝐶⟩} Fn {𝑛})
6 bnj521 32716 . . . . 5 (𝑛 ∩ {𝑛}) = ∅
76a1i 11 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅)
81, 5, 7fnund 6546 . . 3 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) Fn (𝑛 ∪ {𝑛}))
9 bnj927.1 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
109fneq1i 6530 . . 3 (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {⟨𝑛, 𝐶⟩}) Fn (𝑛 ∪ {𝑛}))
118, 10sylibr 233 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛}))
12 df-suc 6272 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1312eqeq2i 2751 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
1413biimpi 215 . . . 4 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
1514adantr 481 . . 3 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛}))
1615fneq2d 6527 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝐺 Fn 𝑝𝐺 Fn (𝑛 ∪ {𝑛})))
1711, 16mpbird 256 1 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  c0 4256  {csn 4561  cop 4567  suc csuc 6268   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-suc 6272  df-fun 6435  df-fn 6436
This theorem is referenced by:  bnj941  32752  bnj929  32916
  Copyright terms: Public domain W3C validator