Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj927 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj927.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
bnj927.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
bnj927 | ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑓 Fn 𝑛) | |
2 | vex 3426 | . . . . . 6 ⊢ 𝑛 ∈ V | |
3 | bnj927.2 | . . . . . 6 ⊢ 𝐶 ∈ V | |
4 | 2, 3 | fnsn 6476 | . . . . 5 ⊢ {〈𝑛, 𝐶〉} Fn {𝑛} |
5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → {〈𝑛, 𝐶〉} Fn {𝑛}) |
6 | bnj521 32616 | . . . . 5 ⊢ (𝑛 ∩ {𝑛}) = ∅ | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅) |
8 | 1, 5, 7 | fnund 6530 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) |
9 | bnj927.1 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
10 | 9 | fneq1i 6514 | . . 3 ⊢ (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) |
11 | 8, 10 | sylibr 233 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛})) |
12 | df-suc 6257 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
13 | 12 | eqeq2i 2751 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) |
14 | 13 | biimpi 215 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 = (𝑛 ∪ {𝑛})) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛})) |
16 | 15 | fneq2d 6511 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝐺 Fn 𝑝 ↔ 𝐺 Fn (𝑛 ∪ {𝑛}))) |
17 | 11, 16 | mpbird 256 | 1 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 〈cop 4564 suc csuc 6253 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-suc 6257 df-fun 6420 df-fn 6421 |
This theorem is referenced by: bnj941 32652 bnj929 32816 |
Copyright terms: Public domain | W3C validator |