|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj927 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj927.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | 
| bnj927.2 | ⊢ 𝐶 ∈ V | 
| Ref | Expression | 
|---|---|
| bnj927 | ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑓 Fn 𝑛) | |
| 2 | vex 3484 | . . . . . 6 ⊢ 𝑛 ∈ V | |
| 3 | bnj927.2 | . . . . . 6 ⊢ 𝐶 ∈ V | |
| 4 | 2, 3 | fnsn 6624 | . . . . 5 ⊢ {〈𝑛, 𝐶〉} Fn {𝑛} | 
| 5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → {〈𝑛, 𝐶〉} Fn {𝑛}) | 
| 6 | disjcsn 9644 | . . . . 5 ⊢ (𝑛 ∩ {𝑛}) = ∅ | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑛 ∩ {𝑛}) = ∅) | 
| 8 | 1, 5, 7 | fnund 6683 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) | 
| 9 | bnj927.1 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 10 | 9 | fneq1i 6665 | . . 3 ⊢ (𝐺 Fn (𝑛 ∪ {𝑛}) ↔ (𝑓 ∪ {〈𝑛, 𝐶〉}) Fn (𝑛 ∪ {𝑛})) | 
| 11 | 8, 10 | sylibr 234 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn (𝑛 ∪ {𝑛})) | 
| 12 | df-suc 6390 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
| 13 | 12 | eqeq2i 2750 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) | 
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 = (𝑛 ∪ {𝑛})) | 
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝑝 = (𝑛 ∪ {𝑛})) | 
| 16 | 15 | fneq2d 6662 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝐺 Fn 𝑝 ↔ 𝐺 Fn (𝑛 ∪ {𝑛}))) | 
| 17 | 11, 16 | mpbird 257 | 1 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 {csn 4626 〈cop 4632 suc csuc 6386 Fn wfn 6556 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-reg 9632 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-suc 6390 df-fun 6563 df-fn 6564 | 
| This theorem is referenced by: bnj941 34786 bnj929 34950 | 
| Copyright terms: Public domain | W3C validator |