![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfun | Structured version Visualization version GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6185 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 490 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 dom cdm 5401 Fun wfun 6176 Fn wfn 6177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-fn 6185 |
This theorem is referenced by: fnrel 6281 funfni 6284 fnco 6292 fnssresb 6296 ffun 6341 f1fun 6400 f1ofun 6440 fnbrfvb 6542 fvelimab 6560 fvun1 6576 elpreima 6647 respreima 6655 fnsnr 6744 fnprb 6791 fntpb 6792 fconst3 6796 fnfvima 6814 fnunirn 6831 nvof1o 6856 f1eqcocnv 6876 fnexALT 7458 curry1 7601 curry2 7604 suppvalfn 7634 suppfnss 7652 fnsuppres 7654 wfrlem2 7752 wfrlem14 7766 tfrlem4 7813 tfrlem5 7814 tfrlem11 7822 tz7.48-2 7875 tz7.49 7878 fndmeng 8378 fnfi 8585 fodomfi 8586 resfnfinfin 8593 fczfsuppd 8640 marypha2lem4 8691 inf0 8872 r1elss 9023 dfac8alem 9243 alephfp 9322 dfac3 9335 dfac9 9350 dfac12lem1 9357 dfac12lem2 9358 r1om 9458 cfsmolem 9484 alephsing 9490 zorn2lem1 9710 zorn2lem5 9714 zorn2lem6 9715 zorn2lem7 9716 ttukeylem3 9725 ttukeylem6 9728 fnct 9751 smobeth 9800 fpwwe2lem9 9852 wunr1om 9933 tskr1om 9981 tskr1om2 9982 uzrdg0i 13136 uzrdgsuci 13137 seqexw 13194 hashkf 13501 cshimadifsn 14047 cshimadifsn0 14048 shftfn 14287 phimullem 15966 imasaddvallem 16652 imasvscaval 16661 lcomfsupp 19390 lidlval 19680 rspval 19681 psrbagev1 19997 psgnghm 20420 frlmsslsp 20636 iscldtop 21401 2ndcomap 21764 qtoptop 22006 basqtop 22017 qtoprest 22023 kqfvima 22036 isr0 22043 kqreglem1 22047 kqnrmlem1 22049 kqnrmlem2 22050 elrnust 22530 ustbas 22533 uniiccdif 23876 fcoinver 30115 fnpreimac 30172 mdetpmtr1 30730 fimaproj 30741 sseqf 31296 sseqfv2 31298 elorrvc 31367 bnj930 31689 bnj1371 31946 bnj1497 31977 frrlem2 32645 frrlem12 32655 noextendseq 32695 madeval 32810 filnetlem4 33250 heibor1lem 34529 diaf11N 37630 dibf11N 37742 dibclN 37743 dihintcl 37925 fnsnbt 38565 ismrc 38693 dnnumch1 39040 aomclem4 39053 aomclem6 39055 ntrclsfv1 39768 ntrneifv1 39792 fvelimad 40945 fvelima2 40960 climrescn 41460 icccncfext 41600 stoweidlem29 41745 stoweidlem59 41775 ovolval4lem1 42362 fnresfnco 42681 funcoressn 42682 fnbrafvb 42759 tz6.12-afv 42778 afvco2 42781 tz6.12-afv2 42845 fnbrafv2b 42853 plusfreseq 43407 dfrngc2 43607 dfringc2 43653 rngcresringcat 43665 mndpsuppss 43785 mndpfsupp 43790 |
Copyright terms: Public domain | W3C validator |