![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1316 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1316.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
bnj1316.2 | ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
bnj1316 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1316.1 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | nfcii 2897 | . . . 4 ⊢ Ⅎ𝑥𝐴 |
3 | bnj1316.2 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | |
4 | 3 | nfcii 2897 | . . . 4 ⊢ Ⅎ𝑥𝐵 |
5 | 2, 4 | nfeq 2922 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
6 | 5 | nf5ri 2196 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) |
7 | 6 | bnj956 34752 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rex 3077 df-iun 5017 |
This theorem is referenced by: bnj1000 34917 bnj1318 35001 |
Copyright terms: Public domain | W3C validator |