MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab1 Structured version   Visualization version   GIF version

Theorem brab1 5214
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)

Proof of Theorem brab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . . . 4 (𝑧 = 𝑦 → (𝑧𝑅𝐴𝑦𝑅𝐴))
2 breq1 5169 . . . 4 (𝑦 = 𝑥 → (𝑦𝑅𝐴𝑥𝑅𝐴))
31, 2sbcie2g 3847 . . 3 (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴))
43elv 3493 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴)
5 df-sbc 3805 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
64, 5bitr3i 277 1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  {cab 2717  Vcvv 3488  [wsbc 3804   class class class wbr 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator