| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brab1 | Structured version Visualization version GIF version | ||
| Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
| Ref | Expression |
|---|---|
| brab1 | ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5113 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧𝑅𝐴 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5113 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦𝑅𝐴 ↔ 𝑥𝑅𝐴)) | |
| 3 | 1, 2 | sbcie2g 3797 | . . 3 ⊢ (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴)) |
| 4 | 3 | elv 3455 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴) |
| 5 | df-sbc 3757 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | |
| 6 | 4, 5 | bitr3i 277 | 1 ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |