Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brab1 | Structured version Visualization version GIF version |
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
Ref | Expression |
---|---|
brab1 | ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5081 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧𝑅𝐴 ↔ 𝑦𝑅𝐴)) | |
2 | breq1 5081 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦𝑅𝐴 ↔ 𝑥𝑅𝐴)) | |
3 | 1, 2 | sbcie2g 3761 | . . 3 ⊢ (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴)) |
4 | 3 | elv 3436 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴) |
5 | df-sbc 3720 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | |
6 | 4, 5 | bitr3i 276 | 1 ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2109 {cab 2716 Vcvv 3430 [wsbc 3719 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |