MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab1 Structured version   Visualization version   GIF version

Theorem brab1 5140
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)

Proof of Theorem brab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5095 . . . 4 (𝑧 = 𝑦 → (𝑧𝑅𝐴𝑦𝑅𝐴))
2 breq1 5095 . . . 4 (𝑦 = 𝑥 → (𝑦𝑅𝐴𝑥𝑅𝐴))
31, 2sbcie2g 3769 . . 3 (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴))
43elv 3447 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴)
5 df-sbc 3728 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
64, 5bitr3i 276 1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2105  {cab 2713  Vcvv 3441  [wsbc 3727   class class class wbr 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator