MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br0 Structured version   Visualization version   GIF version

Theorem br0 5156
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
br0 ¬ 𝐴𝐵

Proof of Theorem br0
StepHypRef Expression
1 noel 4301 . 2 ¬ ⟨𝐴, 𝐵⟩ ∈ ∅
2 df-br 5108 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ∅)
31, 2mtbir 323 1 ¬ 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  c0 4296  cop 4595   class class class wbr 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3917  df-nul 4297  df-br 5108
This theorem is referenced by:  sbcbr123  5161  sbcbr  5162  cnv0  6113  co02  6233  fvmptopabOLD  7444  brfvopab  7446  0we1  8470  brdom3  10481  canthwe  10604  relexpindlem  15029  join0  18364  meet0  18365  acycgr0v  35135  prclisacycgr  35138  disjALTV0  38746  brnonrel  43578  upwlkbprop  48126
  Copyright terms: Public domain W3C validator