MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br0 Structured version   Visualization version   GIF version

Theorem br0 4890
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
br0 ¬ 𝐴𝐵

Proof of Theorem br0
StepHypRef Expression
1 noel 4117 . 2 ¬ ⟨𝐴, 𝐵⟩ ∈ ∅
2 df-br 4842 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ∅)
31, 2mtbir 315 1 ¬ 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2157  c0 4113  cop 4372   class class class wbr 4841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2775
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-v 3385  df-dif 3770  df-nul 4114  df-br 4842
This theorem is referenced by:  sbcbr123  4895  sbcbr  4896  cnv0  5751  co02  5866  fvmptopab  6929  brfvopab  6932  0we1  7824  brdom3  9636  canthwe  9759  meet0  17449  join0  17450  brnonrel  38666  upwlkbprop  42506
  Copyright terms: Public domain W3C validator