![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version |
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
br0 | ⊢ ¬ 𝐴∅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
2 | df-br 5167 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ 𝐴∅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4352 〈cop 4654 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-nul 4353 df-br 5167 |
This theorem is referenced by: sbcbr123 5220 sbcbr 5221 cnv0 6172 co02 6291 fvmptopabOLD 7505 brfvopab 7507 0we1 8562 brdom3 10597 canthwe 10720 relexpindlem 15112 join0 18475 meet0 18476 acycgr0v 35116 prclisacycgr 35119 disjALTV0 38710 brnonrel 43551 upwlkbprop 47861 |
Copyright terms: Public domain | W3C validator |