MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br0 Structured version   Visualization version   GIF version

Theorem br0 5144
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
br0 ¬ 𝐴𝐵

Proof of Theorem br0
StepHypRef Expression
1 noel 4291 . 2 ¬ ⟨𝐴, 𝐵⟩ ∈ ∅
2 df-br 5096 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ∅)
31, 2mtbir 323 1 ¬ 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  c0 4286  cop 4585   class class class wbr 5095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3908  df-nul 4287  df-br 5096
This theorem is referenced by:  sbcbr123  5149  sbcbr  5150  cnv0  6093  co02  6213  brfvopab  7410  0we1  8431  brdom3  10441  canthwe  10564  relexpindlem  14988  join0  18327  meet0  18328  acycgr0v  35123  prclisacycgr  35126  disjALTV0  38734  brnonrel  43565  upwlkbprop  48126
  Copyright terms: Public domain W3C validator