Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version |
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
br0 | ⊢ ¬ 𝐴∅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
2 | df-br 5071 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
3 | 1, 2 | mtbir 322 | 1 ⊢ ¬ 𝐴∅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4253 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-dif 3886 df-nul 4254 df-br 5071 |
This theorem is referenced by: sbcbr123 5124 sbcbr 5125 cnv0 6033 co02 6153 fvmptopab 7308 brfvopab 7310 0we1 8298 brdom3 10215 canthwe 10338 relexpindlem 14702 join0 18038 meet0 18039 acycgr0v 33010 prclisacycgr 33013 disjALTV0 36789 brnonrel 41086 upwlkbprop 45188 |
Copyright terms: Public domain | W3C validator |