| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version | ||
| Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| br0 | ⊢ ¬ 𝐴∅𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
| 2 | df-br 5096 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ 𝐴∅𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2113 ∅c0 4282 〈cop 4583 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-nul 4283 df-br 5096 |
| This theorem is referenced by: sbcbr123 5149 sbcbr 5150 cnv0 6094 cnv0OLD 6095 co02 6216 brfvopab 7412 0we1 8430 brdom3 10430 canthwe 10553 relexpindlem 14977 join0 18317 meet0 18318 acycgr0v 35264 prclisacycgr 35267 disjALTV0 38925 brnonrel 43746 upwlkbprop 48300 |
| Copyright terms: Public domain | W3C validator |