![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version |
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
br0 | ⊢ ¬ 𝐴∅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4117 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
2 | df-br 4842 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
3 | 1, 2 | mtbir 315 | 1 ⊢ ¬ 𝐴∅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2157 ∅c0 4113 〈cop 4372 class class class wbr 4841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-dif 3770 df-nul 4114 df-br 4842 |
This theorem is referenced by: sbcbr123 4895 sbcbr 4896 cnv0 5751 co02 5866 fvmptopab 6929 brfvopab 6932 0we1 7824 brdom3 9636 canthwe 9759 meet0 17449 join0 17450 brnonrel 38666 upwlkbprop 42506 |
Copyright terms: Public domain | W3C validator |