| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version | ||
| Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| br0 | ⊢ ¬ 𝐴∅𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
| 2 | df-br 5111 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ 𝐴∅𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4299 〈cop 4598 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-nul 4300 df-br 5111 |
| This theorem is referenced by: sbcbr123 5164 sbcbr 5165 cnv0 6116 co02 6236 fvmptopabOLD 7447 brfvopab 7449 0we1 8473 brdom3 10488 canthwe 10611 relexpindlem 15036 join0 18371 meet0 18372 acycgr0v 35142 prclisacycgr 35145 disjALTV0 38753 brnonrel 43585 upwlkbprop 48130 |
| Copyright terms: Public domain | W3C validator |