![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version |
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
br0 | ⊢ ¬ 𝐴∅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4344 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
2 | df-br 5149 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ 𝐴∅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∅c0 4339 〈cop 4637 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-dif 3966 df-nul 4340 df-br 5149 |
This theorem is referenced by: sbcbr123 5202 sbcbr 5203 cnv0 6163 co02 6282 fvmptopabOLD 7488 brfvopab 7490 0we1 8543 brdom3 10566 canthwe 10689 relexpindlem 15099 join0 18463 meet0 18464 acycgr0v 35133 prclisacycgr 35136 disjALTV0 38736 brnonrel 43579 upwlkbprop 47982 |
Copyright terms: Public domain | W3C validator |