| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version | ||
| Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| br0 | ⊢ ¬ 𝐴∅𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
| 2 | df-br 5096 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ 𝐴∅𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4286 〈cop 4585 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3908 df-nul 4287 df-br 5096 |
| This theorem is referenced by: sbcbr123 5149 sbcbr 5150 cnv0 6093 co02 6213 brfvopab 7410 0we1 8431 brdom3 10441 canthwe 10564 relexpindlem 14988 join0 18327 meet0 18328 acycgr0v 35123 prclisacycgr 35126 disjALTV0 38734 brnonrel 43565 upwlkbprop 48126 |
| Copyright terms: Public domain | W3C validator |