| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br0 | Structured version Visualization version GIF version | ||
| Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| br0 | ⊢ ¬ 𝐴∅𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
| 2 | df-br 5108 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ 𝐴∅𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4296 〈cop 4595 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-nul 4297 df-br 5108 |
| This theorem is referenced by: sbcbr123 5161 sbcbr 5162 cnv0 6113 co02 6233 fvmptopabOLD 7444 brfvopab 7446 0we1 8470 brdom3 10481 canthwe 10604 relexpindlem 15029 join0 18364 meet0 18365 acycgr0v 35135 prclisacycgr 35138 disjALTV0 38746 brnonrel 43578 upwlkbprop 48126 |
| Copyright terms: Public domain | W3C validator |