MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br0 Structured version   Visualization version   GIF version

Theorem br0 5215
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
br0 ¬ 𝐴𝐵

Proof of Theorem br0
StepHypRef Expression
1 noel 4360 . 2 ¬ ⟨𝐴, 𝐵⟩ ∈ ∅
2 df-br 5167 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ∅)
31, 2mtbir 323 1 ¬ 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  c0 4352  cop 4654   class class class wbr 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-dif 3979  df-nul 4353  df-br 5167
This theorem is referenced by:  sbcbr123  5220  sbcbr  5221  cnv0  6172  co02  6291  fvmptopabOLD  7505  brfvopab  7507  0we1  8562  brdom3  10597  canthwe  10720  relexpindlem  15112  join0  18475  meet0  18476  acycgr0v  35116  prclisacycgr  35119  disjALTV0  38710  brnonrel  43551  upwlkbprop  47861
  Copyright terms: Public domain W3C validator