| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsymdif | Structured version Visualization version GIF version | ||
| Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| brsymdif | ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5124 | . 2 ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆)) | |
| 2 | elsymdif 4238 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆) ↔ ¬ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 3 | df-br 5124 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5124 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 3, 4 | bibi12i 339 | . . 3 ⊢ ((𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 6 | 2, 5 | xchbinxr 335 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆) ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2107 △ csymdif 4232 〈cop 4612 class class class wbr 5123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-symdif 4233 df-br 5124 |
| This theorem is referenced by: brtxpsd 35854 |
| Copyright terms: Public domain | W3C validator |