MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsymdif Structured version   Visualization version   GIF version

Theorem brsymdif 5148
Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
brsymdif (𝐴(𝑅𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brsymdif
StepHypRef Expression
1 df-br 5090 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
2 elsymdif 4205 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ ¬ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
3 df-br 5090 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5090 . . . 4 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4bibi12i 339 . . 3 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
62, 5xchbinxr 335 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))
71, 6bitri 275 1 (𝐴(𝑅𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2111  csymdif 4199  cop 4579   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-symdif 4200  df-br 5090
This theorem is referenced by:  brtxpsd  35936
  Copyright terms: Public domain W3C validator