Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brsymdif | Structured version Visualization version GIF version |
Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brsymdif | ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5086 | . 2 ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆)) | |
2 | elsymdif 4191 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆) ↔ ¬ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
3 | df-br 5086 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 5086 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | bibi12i 339 | . . 3 ⊢ ((𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 2, 5 | xchbinxr 334 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 △ 𝑆) ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
7 | 1, 6 | bitri 274 | 1 ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2105 △ csymdif 4185 〈cop 4575 class class class wbr 5085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-dif 3899 df-un 3901 df-symdif 4186 df-br 5086 |
This theorem is referenced by: brtxpsd 34257 |
Copyright terms: Public domain | W3C validator |