Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsymdif Structured version   Visualization version   GIF version

Theorem brsymdif 5111
 Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
brsymdif (𝐴(𝑅𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brsymdif
StepHypRef Expression
1 df-br 5053 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
2 elsymdif 4209 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ ¬ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
3 df-br 5053 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5053 . . . 4 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4bibi12i 343 . . 3 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
62, 5xchbinxr 338 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))
71, 6bitri 278 1 (𝐴(𝑅𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∈ wcel 2115   △ csymdif 4203  ⟨cop 4556   class class class wbr 5052 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-dif 3922  df-un 3924  df-symdif 4204  df-br 5053 This theorem is referenced by:  brtxpsd  33412
 Copyright terms: Public domain W3C validator