![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd | Structured version Visualization version GIF version |
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd.1 | ⊢ 𝐴 ∈ V |
brtxpsd.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brtxpsd | ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5148 | . . 3 ⊢ (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V))) | |
2 | opex 5463 | . . . . 5 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
3 | 2 | elrn 5892 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩) |
4 | brsymdif 5206 | . . . . . 6 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩)) | |
5 | brv 5471 | . . . . . . . . 9 ⊢ 𝑥V𝐴 | |
6 | vex 3476 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
7 | brtxpsd.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ V | |
8 | brtxpsd.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
9 | 6, 7, 8 | brtxp 35156 | . . . . . . . . 9 ⊢ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ (𝑥V𝐴 ∧ 𝑥 E 𝐵)) |
10 | 5, 9 | mpbiran 705 | . . . . . . . 8 ⊢ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 E 𝐵) |
11 | 8 | epeli 5581 | . . . . . . . 8 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
12 | 10, 11 | bitri 274 | . . . . . . 7 ⊢ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ 𝐵) |
13 | brv 5471 | . . . . . . . 8 ⊢ 𝑥V𝐵 | |
14 | 6, 7, 8 | brtxp 35156 | . . . . . . . 8 ⊢ (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ (𝑥𝑅𝐴 ∧ 𝑥V𝐵)) |
15 | 13, 14 | mpbiran2 706 | . . . . . . 7 ⊢ (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ 𝑥𝑅𝐴) |
16 | 12, 15 | bibi12i 338 | . . . . . 6 ⊢ ((𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
17 | 4, 16 | xchbinx 333 | . . . . 5 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
18 | 17 | exbii 1848 | . . . 4 ⊢ (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
19 | 3, 18 | bitri 274 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
20 | exnal 1827 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | |
21 | 1, 19, 20 | 3bitrri 297 | . 2 ⊢ (¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵) |
22 | 21 | con1bii 355 | 1 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 △ csymdif 4240 ⟨cop 4633 class class class wbr 5147 E cep 5578 ran crn 5676 ⊗ ctxp 35106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-symdif 4241 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-eprel 5579 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7977 df-2nd 7978 df-txp 35130 |
This theorem is referenced by: brtxpsd2 35171 |
Copyright terms: Public domain | W3C validator |