![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd | Structured version Visualization version GIF version |
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd.1 | ⊢ 𝐴 ∈ V |
brtxpsd.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brtxpsd | ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . . 3 ⊢ (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V))) | |
2 | opex 5475 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | elrn 5907 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉) |
4 | brsymdif 5207 | . . . . . 6 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉)) | |
5 | brv 5483 | . . . . . . . . 9 ⊢ 𝑥V𝐴 | |
6 | vex 3482 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
7 | brtxpsd.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ V | |
8 | brtxpsd.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
9 | 6, 7, 8 | brtxp 35862 | . . . . . . . . 9 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ (𝑥V𝐴 ∧ 𝑥 E 𝐵)) |
10 | 5, 9 | mpbiran 709 | . . . . . . . 8 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 E 𝐵) |
11 | 8 | epeli 5591 | . . . . . . . 8 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
12 | 10, 11 | bitri 275 | . . . . . . 7 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 𝐵) |
13 | brv 5483 | . . . . . . . 8 ⊢ 𝑥V𝐵 | |
14 | 6, 7, 8 | brtxp 35862 | . . . . . . . 8 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ (𝑥𝑅𝐴 ∧ 𝑥V𝐵)) |
15 | 13, 14 | mpbiran2 710 | . . . . . . 7 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ 𝑥𝑅𝐴) |
16 | 12, 15 | bibi12i 339 | . . . . . 6 ⊢ ((𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
17 | 4, 16 | xchbinx 334 | . . . . 5 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
18 | 17 | exbii 1845 | . . . 4 ⊢ (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
19 | 3, 18 | bitri 275 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
20 | exnal 1824 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | |
21 | 1, 19, 20 | 3bitrri 298 | . 2 ⊢ (¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵) |
22 | 21 | con1bii 356 | 1 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 △ csymdif 4258 〈cop 4637 class class class wbr 5148 E cep 5588 ran crn 5690 ⊗ ctxp 35812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-symdif 4259 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-txp 35836 |
This theorem is referenced by: brtxpsd2 35877 |
Copyright terms: Public domain | W3C validator |