Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd | Structured version Visualization version GIF version |
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd.1 | ⊢ 𝐴 ∈ V |
brtxpsd.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brtxpsd | ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . . 3 ⊢ (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V))) | |
2 | opex 5373 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | elrn 5791 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉) |
4 | brsymdif 5129 | . . . . . 6 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉)) | |
5 | brv 5381 | . . . . . . . . 9 ⊢ 𝑥V𝐴 | |
6 | vex 3426 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
7 | brtxpsd.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ V | |
8 | brtxpsd.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
9 | 6, 7, 8 | brtxp 34109 | . . . . . . . . 9 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ (𝑥V𝐴 ∧ 𝑥 E 𝐵)) |
10 | 5, 9 | mpbiran 705 | . . . . . . . 8 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 E 𝐵) |
11 | 8 | epeli 5488 | . . . . . . . 8 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
12 | 10, 11 | bitri 274 | . . . . . . 7 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 𝐵) |
13 | brv 5381 | . . . . . . . 8 ⊢ 𝑥V𝐵 | |
14 | 6, 7, 8 | brtxp 34109 | . . . . . . . 8 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ (𝑥𝑅𝐴 ∧ 𝑥V𝐵)) |
15 | 13, 14 | mpbiran2 706 | . . . . . . 7 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ 𝑥𝑅𝐴) |
16 | 12, 15 | bibi12i 339 | . . . . . 6 ⊢ ((𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
17 | 4, 16 | xchbinx 333 | . . . . 5 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
18 | 17 | exbii 1851 | . . . 4 ⊢ (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
19 | 3, 18 | bitri 274 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
20 | exnal 1830 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | |
21 | 1, 19, 20 | 3bitrri 297 | . 2 ⊢ (¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵) |
22 | 21 | con1bii 356 | 1 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 △ csymdif 4172 〈cop 4564 class class class wbr 5070 E cep 5485 ran crn 5581 ⊗ ctxp 34059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 |
This theorem is referenced by: brtxpsd2 34124 |
Copyright terms: Public domain | W3C validator |