| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd | Structured version Visualization version GIF version | ||
| Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brtxpsd.1 | ⊢ 𝐴 ∈ V |
| brtxpsd.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brtxpsd | ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . . 3 ⊢ (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V))) | |
| 2 | opex 5402 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | elrn 5832 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉) |
| 4 | brsymdif 5148 | . . . . . 6 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉)) | |
| 5 | brv 5410 | . . . . . . . . 9 ⊢ 𝑥V𝐴 | |
| 6 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 7 | brtxpsd.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ V | |
| 8 | brtxpsd.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
| 9 | 6, 7, 8 | brtxp 35922 | . . . . . . . . 9 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ (𝑥V𝐴 ∧ 𝑥 E 𝐵)) |
| 10 | 5, 9 | mpbiran 709 | . . . . . . . 8 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 E 𝐵) |
| 11 | 8 | epeli 5516 | . . . . . . . 8 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
| 12 | 10, 11 | bitri 275 | . . . . . . 7 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 𝐵) |
| 13 | brv 5410 | . . . . . . . 8 ⊢ 𝑥V𝐵 | |
| 14 | 6, 7, 8 | brtxp 35922 | . . . . . . . 8 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ (𝑥𝑅𝐴 ∧ 𝑥V𝐵)) |
| 15 | 13, 14 | mpbiran2 710 | . . . . . . 7 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ 𝑥𝑅𝐴) |
| 16 | 12, 15 | bibi12i 339 | . . . . . 6 ⊢ ((𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
| 17 | 4, 16 | xchbinx 334 | . . . . 5 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
| 18 | 17 | exbii 1849 | . . . 4 ⊢ (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
| 19 | 3, 18 | bitri 275 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
| 20 | exnal 1828 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | |
| 21 | 1, 19, 20 | 3bitrri 298 | . 2 ⊢ (¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵) |
| 22 | 21 | con1bii 356 | 1 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 △ csymdif 4199 〈cop 4579 class class class wbr 5089 E cep 5513 ran crn 5615 ⊗ ctxp 35872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4200 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 |
| This theorem is referenced by: brtxpsd2 35937 |
| Copyright terms: Public domain | W3C validator |