![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd | Structured version Visualization version GIF version |
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd.1 | ⊢ 𝐴 ∈ V |
brtxpsd.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brtxpsd | ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5167 | . . 3 ⊢ (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V))) | |
2 | opex 5484 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | elrn 5918 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉) |
4 | brsymdif 5225 | . . . . . 6 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉)) | |
5 | brv 5492 | . . . . . . . . 9 ⊢ 𝑥V𝐴 | |
6 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
7 | brtxpsd.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ V | |
8 | brtxpsd.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
9 | 6, 7, 8 | brtxp 35844 | . . . . . . . . 9 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ (𝑥V𝐴 ∧ 𝑥 E 𝐵)) |
10 | 5, 9 | mpbiran 708 | . . . . . . . 8 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 E 𝐵) |
11 | 8 | epeli 5601 | . . . . . . . 8 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
12 | 10, 11 | bitri 275 | . . . . . . 7 ⊢ (𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 𝐵) |
13 | brv 5492 | . . . . . . . 8 ⊢ 𝑥V𝐵 | |
14 | 6, 7, 8 | brtxp 35844 | . . . . . . . 8 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ (𝑥𝑅𝐴 ∧ 𝑥V𝐵)) |
15 | 13, 14 | mpbiran2 709 | . . . . . . 7 ⊢ (𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉 ↔ 𝑥𝑅𝐴) |
16 | 12, 15 | bibi12i 339 | . . . . . 6 ⊢ ((𝑥(V ⊗ E )〈𝐴, 𝐵〉 ↔ 𝑥(𝑅 ⊗ V)〈𝐴, 𝐵〉) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
17 | 4, 16 | xchbinx 334 | . . . . 5 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
18 | 17 | exbii 1846 | . . . 4 ⊢ (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))〈𝐴, 𝐵〉 ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
19 | 3, 18 | bitri 275 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
20 | exnal 1825 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | |
21 | 1, 19, 20 | 3bitrri 298 | . 2 ⊢ (¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵) |
22 | 21 | con1bii 356 | 1 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 △ csymdif 4271 〈cop 4654 class class class wbr 5166 E cep 5598 ran crn 5701 ⊗ ctxp 35794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 |
This theorem is referenced by: brtxpsd2 35859 |
Copyright terms: Public domain | W3C validator |