Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd Structured version   Visualization version   GIF version

Theorem brtxpsd 35875
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd.1 𝐴 ∈ V
brtxpsd.2 𝐵 ∈ V
Assertion
Ref Expression
brtxpsd 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brtxpsd
StepHypRef Expression
1 df-br 5103 . . 3 (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)))
2 opex 5419 . . . . 5 𝐴, 𝐵⟩ ∈ V
32elrn 5847 . . . 4 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩)
4 brsymdif 5161 . . . . . 6 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩))
5 brv 5427 . . . . . . . . 9 𝑥V𝐴
6 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
7 brtxpsd.1 . . . . . . . . . 10 𝐴 ∈ V
8 brtxpsd.2 . . . . . . . . . 10 𝐵 ∈ V
96, 7, 8brtxp 35861 . . . . . . . . 9 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ (𝑥V𝐴𝑥 E 𝐵))
105, 9mpbiran 709 . . . . . . . 8 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 E 𝐵)
118epeli 5533 . . . . . . . 8 (𝑥 E 𝐵𝑥𝐵)
1210, 11bitri 275 . . . . . . 7 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
13 brv 5427 . . . . . . . 8 𝑥V𝐵
146, 7, 8brtxp 35861 . . . . . . . 8 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ (𝑥𝑅𝐴𝑥V𝐵))
1513, 14mpbiran2 710 . . . . . . 7 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ 𝑥𝑅𝐴)
1612, 15bibi12i 339 . . . . . 6 ((𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩) ↔ (𝑥𝐵𝑥𝑅𝐴))
174, 16xchbinx 334 . . . . 5 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥𝐵𝑥𝑅𝐴))
1817exbii 1848 . . . 4 (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
193, 18bitri 275 . . 3 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
20 exnal 1827 . . 3 (∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
211, 19, 203bitrri 298 . 2 (¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵)
2221con1bii 356 1 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538  wex 1779  wcel 2109  Vcvv 3444  csymdif 4211  cop 4591   class class class wbr 5102   E cep 5530  ran crn 5632  ctxp 35811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35835
This theorem is referenced by:  brtxpsd2  35876
  Copyright terms: Public domain W3C validator