![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd | Structured version Visualization version GIF version |
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd.1 | ⊢ 𝐴 ∈ V |
brtxpsd.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brtxpsd | ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . 3 ⊢ (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V))) | |
2 | opex 5465 | . . . . 5 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
3 | 2 | elrn 5894 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩) |
4 | brsymdif 5208 | . . . . . 6 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩)) | |
5 | brv 5473 | . . . . . . . . 9 ⊢ 𝑥V𝐴 | |
6 | vex 3479 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
7 | brtxpsd.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ V | |
8 | brtxpsd.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
9 | 6, 7, 8 | brtxp 34852 | . . . . . . . . 9 ⊢ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ (𝑥V𝐴 ∧ 𝑥 E 𝐵)) |
10 | 5, 9 | mpbiran 708 | . . . . . . . 8 ⊢ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 E 𝐵) |
11 | 8 | epeli 5583 | . . . . . . . 8 ⊢ (𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵) |
12 | 10, 11 | bitri 275 | . . . . . . 7 ⊢ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ 𝐵) |
13 | brv 5473 | . . . . . . . 8 ⊢ 𝑥V𝐵 | |
14 | 6, 7, 8 | brtxp 34852 | . . . . . . . 8 ⊢ (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ (𝑥𝑅𝐴 ∧ 𝑥V𝐵)) |
15 | 13, 14 | mpbiran2 709 | . . . . . . 7 ⊢ (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ 𝑥𝑅𝐴) |
16 | 12, 15 | bibi12i 340 | . . . . . 6 ⊢ ((𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
17 | 4, 16 | xchbinx 334 | . . . . 5 ⊢ (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
18 | 17 | exbii 1851 | . . . 4 ⊢ (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
19 | 3, 18 | bitri 275 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
20 | exnal 1830 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | |
21 | 1, 19, 20 | 3bitrri 298 | . 2 ⊢ (¬ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵) |
22 | 21 | con1bii 357 | 1 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 △ csymdif 4242 ⟨cop 4635 class class class wbr 5149 E cep 5580 ran crn 5678 ⊗ ctxp 34802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-symdif 4243 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-1st 7975 df-2nd 7976 df-txp 34826 |
This theorem is referenced by: brtxpsd2 34867 |
Copyright terms: Public domain | W3C validator |