Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd Structured version   Visualization version   GIF version

Theorem brtxpsd 35718
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd.1 𝐴 ∈ V
brtxpsd.2 𝐵 ∈ V
Assertion
Ref Expression
brtxpsd 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brtxpsd
StepHypRef Expression
1 df-br 5154 . . 3 (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)))
2 opex 5470 . . . . 5 𝐴, 𝐵⟩ ∈ V
32elrn 5900 . . . 4 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩)
4 brsymdif 5212 . . . . . 6 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩))
5 brv 5478 . . . . . . . . 9 𝑥V𝐴
6 vex 3466 . . . . . . . . . 10 𝑥 ∈ V
7 brtxpsd.1 . . . . . . . . . 10 𝐴 ∈ V
8 brtxpsd.2 . . . . . . . . . 10 𝐵 ∈ V
96, 7, 8brtxp 35704 . . . . . . . . 9 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ (𝑥V𝐴𝑥 E 𝐵))
105, 9mpbiran 707 . . . . . . . 8 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 E 𝐵)
118epeli 5588 . . . . . . . 8 (𝑥 E 𝐵𝑥𝐵)
1210, 11bitri 274 . . . . . . 7 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
13 brv 5478 . . . . . . . 8 𝑥V𝐵
146, 7, 8brtxp 35704 . . . . . . . 8 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ (𝑥𝑅𝐴𝑥V𝐵))
1513, 14mpbiran2 708 . . . . . . 7 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ 𝑥𝑅𝐴)
1612, 15bibi12i 338 . . . . . 6 ((𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩) ↔ (𝑥𝐵𝑥𝑅𝐴))
174, 16xchbinx 333 . . . . 5 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥𝐵𝑥𝑅𝐴))
1817exbii 1843 . . . 4 (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
193, 18bitri 274 . . 3 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
20 exnal 1822 . . 3 (∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
211, 19, 203bitrri 297 . 2 (¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵)
2221con1bii 355 1 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1532  wex 1774  wcel 2099  Vcvv 3462  csymdif 4243  cop 4639   class class class wbr 5153   E cep 5585  ran crn 5683  ctxp 35654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4244  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fo 6560  df-fv 6562  df-1st 8003  df-2nd 8004  df-txp 35678
This theorem is referenced by:  brtxpsd2  35719
  Copyright terms: Public domain W3C validator