Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd Structured version   Visualization version   GIF version

Theorem brtxpsd 35170
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd.1 𝐴 ∈ V
brtxpsd.2 𝐵 ∈ V
Assertion
Ref Expression
brtxpsd 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brtxpsd
StepHypRef Expression
1 df-br 5148 . . 3 (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)))
2 opex 5463 . . . . 5 𝐴, 𝐵⟩ ∈ V
32elrn 5892 . . . 4 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩)
4 brsymdif 5206 . . . . . 6 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩))
5 brv 5471 . . . . . . . . 9 𝑥V𝐴
6 vex 3476 . . . . . . . . . 10 𝑥 ∈ V
7 brtxpsd.1 . . . . . . . . . 10 𝐴 ∈ V
8 brtxpsd.2 . . . . . . . . . 10 𝐵 ∈ V
96, 7, 8brtxp 35156 . . . . . . . . 9 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ (𝑥V𝐴𝑥 E 𝐵))
105, 9mpbiran 705 . . . . . . . 8 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 E 𝐵)
118epeli 5581 . . . . . . . 8 (𝑥 E 𝐵𝑥𝐵)
1210, 11bitri 274 . . . . . . 7 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
13 brv 5471 . . . . . . . 8 𝑥V𝐵
146, 7, 8brtxp 35156 . . . . . . . 8 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ (𝑥𝑅𝐴𝑥V𝐵))
1513, 14mpbiran2 706 . . . . . . 7 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ 𝑥𝑅𝐴)
1612, 15bibi12i 338 . . . . . 6 ((𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩) ↔ (𝑥𝐵𝑥𝑅𝐴))
174, 16xchbinx 333 . . . . 5 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥𝐵𝑥𝑅𝐴))
1817exbii 1848 . . . 4 (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
193, 18bitri 274 . . 3 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
20 exnal 1827 . . 3 (∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
211, 19, 203bitrri 297 . 2 (¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵)
2221con1bii 355 1 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537  wex 1779  wcel 2104  Vcvv 3472  csymdif 4240  cop 4633   class class class wbr 5147   E cep 5578  ran crn 5676  ctxp 35106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7977  df-2nd 7978  df-txp 35130
This theorem is referenced by:  brtxpsd2  35171
  Copyright terms: Public domain W3C validator