MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr2g Structured version   Visualization version   GIF version

Theorem sbcbr2g 5168
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbcbr2g
StepHypRef Expression
1 sbcbr12g 5166 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
2 csbconstg 3884 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32breq1d 5120 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶𝐵𝑅𝐴 / 𝑥𝐶))
41, 3bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  [wsbc 3756  csb 3865   class class class wbr 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111
This theorem is referenced by:  prmgaplem7  17035  telgsums  19930  fvmptnn04if  22743  bnj110  34855  frege124d  43757  frege72  43931  frege91  43950  frege116  43975  frege120  43979
  Copyright terms: Public domain W3C validator