|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcbr2g | Structured version Visualization version GIF version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) | 
| Ref | Expression | 
|---|---|
| sbcbr2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcbr12g 5199 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3918 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | 2 | breq1d 5153 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | 
| 4 | 1, 3 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 [wsbc 3788 ⦋csb 3899 class class class wbr 5143 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 | 
| This theorem is referenced by: prmgaplem7 17095 telgsums 20011 fvmptnn04if 22855 bnj110 34872 frege124d 43774 frege72 43948 frege91 43967 frege116 43992 frege120 43996 | 
| Copyright terms: Public domain | W3C validator |