MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr2g Structured version   Visualization version   GIF version

Theorem sbcbr2g 5205
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbcbr2g
StepHypRef Expression
1 sbcbr12g 5203 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
2 csbconstg 3926 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32breq1d 5157 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶𝐵𝑅𝐴 / 𝑥𝐶))
41, 3bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2105  [wsbc 3790  csb 3907   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148
This theorem is referenced by:  prmgaplem7  17090  telgsums  20025  fvmptnn04if  22870  bnj110  34850  frege124d  43750  frege72  43924  frege91  43943  frege116  43968  frege120  43972
  Copyright terms: Public domain W3C validator