Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5085 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3171 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3566 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 class class class wbr 5081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 |
This theorem is referenced by: axpre-sup 10971 fimaxre2 11966 supaddc 11988 supadd 11989 supmul1 11990 supmullem2 11992 supmul 11993 rpnnen1lem2 12763 iccsupr 13220 supicc 13279 supiccub 13280 supicclub 13281 flval3 13581 fsequb 13741 sqrlem3 15001 caubnd2 15114 caubnd 15115 lo1bdd2 15278 lo1bddrp 15279 climcnds 15608 ruclem12 15995 maxprmfct 16459 prmreclem1 16662 prmreclem6 16667 ramz 16771 pgpssslw 19264 gexex 19499 icccmplem2 24031 icccmplem3 24032 reconnlem2 24035 cnllycmp 24164 cncmet 24531 ivthlem2 24661 ivthlem3 24662 cniccbdd 24670 ovolunlem1 24706 ovoliunlem1 24711 ovoliun2 24715 ioombl1lem4 24770 uniioombllem2 24792 uniioombllem6 24797 mbfinf 24874 mbflimsup 24875 itg1climres 24924 itg2i1fseq 24965 itg2i1fseq2 24966 itg2cnlem1 24971 plyeq0lem 25416 ulmbdd 25602 mtestbdd 25609 iblulm 25611 emcllem6 26195 lgambdd 26231 ftalem3 26269 ubthlem2 29278 ubthlem3 29279 htthlem 29324 rge0scvg 31944 esumpcvgval 32091 oddpwdc 32366 mblfinlem3 35860 ismblfin 35862 itg2addnc 35875 ubelsupr 42601 rexabslelem 43006 limsupubuz 43303 liminfreuzlem 43392 dvdivbd 43513 sge0supre 43977 sge0rnbnd 43981 meaiuninc2 44070 hoidmvlelem1 44183 hoidmvlelem4 44186 smfinflem 44404 |
Copyright terms: Public domain | W3C validator |