| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5128 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3164 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3606 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: axpre-sup 11188 fimaxre2 12192 supaddc 12214 supadd 12215 supmul1 12216 supmullem2 12218 supmul 12219 rpnnen1lem2 12998 iccsupr 13464 supicc 13523 supiccub 13524 supicclub 13525 flval3 13837 fsequb 13998 01sqrexlem3 15268 caubnd2 15381 caubnd 15382 lo1bdd2 15545 lo1bddrp 15546 climcnds 15872 ruclem12 16264 maxprmfct 16733 prmreclem1 16941 prmreclem6 16946 ramz 17050 pgpssslw 19600 gexex 19839 icccmplem2 24768 icccmplem3 24769 reconnlem2 24772 cnllycmp 24911 cncmet 25279 ivthlem2 25410 ivthlem3 25411 cniccbdd 25419 ovolunlem1 25455 ovoliunlem1 25460 ovoliun2 25464 ioombl1lem4 25519 uniioombllem2 25541 uniioombllem6 25546 mbfinf 25623 mbflimsup 25624 itg1climres 25672 itg2i1fseq 25713 itg2i1fseq2 25714 itg2cnlem1 25719 plyeq0lem 26172 ulmbdd 26364 mtestbdd 26371 iblulm 26373 emcllem6 26968 lgambdd 27004 ftalem3 27042 ubthlem2 30857 ubthlem3 30858 htthlem 30903 rge0scvg 33985 esumpcvgval 34114 oddpwdc 34391 mblfinlem3 37688 ismblfin 37690 itg2addnc 37703 ubelsupr 45011 rexabslelem 45412 limsupubuz 45709 liminfreuzlem 45798 dvdivbd 45919 sge0supre 46385 sge0rnbnd 46389 meaiuninc2 46478 hoidmvlelem1 46591 hoidmvlelem4 46594 smfinflem 46813 |
| Copyright terms: Public domain | W3C validator |