| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3157 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3591 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: axpre-sup 11129 fimaxre2 12135 supaddc 12157 supadd 12158 supmul1 12159 supmullem2 12161 supmul 12162 rpnnen1lem2 12943 iccsupr 13410 supicc 13469 supiccub 13470 supicclub 13471 flval3 13784 fsequb 13947 01sqrexlem3 15217 caubnd2 15331 caubnd 15332 lo1bdd2 15497 lo1bddrp 15498 climcnds 15824 ruclem12 16216 maxprmfct 16686 prmreclem1 16894 prmreclem6 16899 ramz 17003 pgpssslw 19551 gexex 19790 icccmplem2 24719 icccmplem3 24720 reconnlem2 24723 cnllycmp 24862 cncmet 25229 ivthlem2 25360 ivthlem3 25361 cniccbdd 25369 ovolunlem1 25405 ovoliunlem1 25410 ovoliun2 25414 ioombl1lem4 25469 uniioombllem2 25491 uniioombllem6 25496 mbfinf 25573 mbflimsup 25574 itg1climres 25622 itg2i1fseq 25663 itg2i1fseq2 25664 itg2cnlem1 25669 plyeq0lem 26122 ulmbdd 26314 mtestbdd 26321 iblulm 26323 emcllem6 26918 lgambdd 26954 ftalem3 26992 ubthlem2 30807 ubthlem3 30808 htthlem 30853 rge0scvg 33946 esumpcvgval 34075 oddpwdc 34352 mblfinlem3 37660 ismblfin 37662 itg2addnc 37675 ubelsupr 45021 rexabslelem 45421 limsupubuz 45718 liminfreuzlem 45807 dvdivbd 45928 sge0supre 46394 sge0rnbnd 46398 meaiuninc2 46487 hoidmvlelem1 46600 hoidmvlelem4 46603 smfinflem 46822 |
| Copyright terms: Public domain | W3C validator |