| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3588 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: axpre-sup 11122 fimaxre2 12128 supaddc 12150 supadd 12151 supmul1 12152 supmullem2 12154 supmul 12155 rpnnen1lem2 12936 iccsupr 13403 supicc 13462 supiccub 13463 supicclub 13464 flval3 13777 fsequb 13940 01sqrexlem3 15210 caubnd2 15324 caubnd 15325 lo1bdd2 15490 lo1bddrp 15491 climcnds 15817 ruclem12 16209 maxprmfct 16679 prmreclem1 16887 prmreclem6 16892 ramz 16996 pgpssslw 19544 gexex 19783 icccmplem2 24712 icccmplem3 24713 reconnlem2 24716 cnllycmp 24855 cncmet 25222 ivthlem2 25353 ivthlem3 25354 cniccbdd 25362 ovolunlem1 25398 ovoliunlem1 25403 ovoliun2 25407 ioombl1lem4 25462 uniioombllem2 25484 uniioombllem6 25489 mbfinf 25566 mbflimsup 25567 itg1climres 25615 itg2i1fseq 25656 itg2i1fseq2 25657 itg2cnlem1 25662 plyeq0lem 26115 ulmbdd 26307 mtestbdd 26314 iblulm 26316 emcllem6 26911 lgambdd 26947 ftalem3 26985 ubthlem2 30800 ubthlem3 30801 htthlem 30846 rge0scvg 33939 esumpcvgval 34068 oddpwdc 34345 mblfinlem3 37653 ismblfin 37655 itg2addnc 37668 ubelsupr 45014 rexabslelem 45414 limsupubuz 45711 liminfreuzlem 45800 dvdivbd 45921 sge0supre 46387 sge0rnbnd 46391 meaiuninc2 46480 hoidmvlelem1 46593 hoidmvlelem4 46596 smfinflem 46815 |
| Copyright terms: Public domain | W3C validator |