| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5096 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3152 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3577 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: axpre-sup 11063 fimaxre2 12070 supaddc 12092 supadd 12093 supmul1 12094 supmullem2 12096 supmul 12097 rpnnen1lem2 12878 iccsupr 13345 supicc 13404 supiccub 13405 supicclub 13406 flval3 13719 fsequb 13882 01sqrexlem3 15151 caubnd2 15265 caubnd 15266 lo1bdd2 15431 lo1bddrp 15432 climcnds 15758 ruclem12 16150 maxprmfct 16620 prmreclem1 16828 prmreclem6 16833 ramz 16937 pgpssslw 19493 gexex 19732 icccmplem2 24710 icccmplem3 24711 reconnlem2 24714 cnllycmp 24853 cncmet 25220 ivthlem2 25351 ivthlem3 25352 cniccbdd 25360 ovolunlem1 25396 ovoliunlem1 25401 ovoliun2 25405 ioombl1lem4 25460 uniioombllem2 25482 uniioombllem6 25487 mbfinf 25564 mbflimsup 25565 itg1climres 25613 itg2i1fseq 25654 itg2i1fseq2 25655 itg2cnlem1 25660 plyeq0lem 26113 ulmbdd 26305 mtestbdd 26312 iblulm 26314 emcllem6 26909 lgambdd 26945 ftalem3 26983 ubthlem2 30819 ubthlem3 30820 htthlem 30865 rge0scvg 33932 esumpcvgval 34061 oddpwdc 34338 mblfinlem3 37659 ismblfin 37661 itg2addnc 37674 ubelsupr 45018 rexabslelem 45417 limsupubuz 45714 liminfreuzlem 45803 dvdivbd 45924 sge0supre 46390 sge0rnbnd 46394 meaiuninc2 46483 hoidmvlelem1 46596 hoidmvlelem4 46599 smfinflem 46818 |
| Copyright terms: Public domain | W3C validator |