Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5082 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3122 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3560 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: axpre-sup 10909 fimaxre2 11903 supaddc 11925 supadd 11926 supmul1 11927 supmullem2 11929 supmul 11930 rpnnen1lem2 12699 iccsupr 13156 supicc 13215 supiccub 13216 supicclub 13217 flval3 13516 fsequb 13676 sqrlem3 14937 caubnd2 15050 caubnd 15051 lo1bdd2 15214 lo1bddrp 15215 climcnds 15544 ruclem12 15931 maxprmfct 16395 prmreclem1 16598 prmreclem6 16603 ramz 16707 pgpssslw 19200 gexex 19435 icccmplem2 23967 icccmplem3 23968 reconnlem2 23971 cnllycmp 24100 cncmet 24467 ivthlem2 24597 ivthlem3 24598 cniccbdd 24606 ovolunlem1 24642 ovoliunlem1 24647 ovoliun2 24651 ioombl1lem4 24706 uniioombllem2 24728 uniioombllem6 24733 mbfinf 24810 mbflimsup 24811 itg1climres 24860 itg2i1fseq 24901 itg2i1fseq2 24902 itg2cnlem1 24907 plyeq0lem 25352 ulmbdd 25538 mtestbdd 25545 iblulm 25547 emcllem6 26131 lgambdd 26167 ftalem3 26205 ubthlem2 29212 ubthlem3 29213 htthlem 29258 rge0scvg 31878 esumpcvgval 32025 oddpwdc 32300 mblfinlem3 35795 ismblfin 35797 itg2addnc 35810 ubelsupr 42516 rexabslelem 42912 limsupubuz 43208 liminfreuzlem 43297 dvdivbd 43418 sge0supre 43881 sge0rnbnd 43885 meaiuninc2 43974 hoidmvlelem1 44087 hoidmvlelem4 44090 smfinflem 44301 |
Copyright terms: Public domain | W3C validator |