![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3176 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3622 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: axpre-sup 11207 fimaxre2 12211 supaddc 12233 supadd 12234 supmul1 12235 supmullem2 12237 supmul 12238 rpnnen1lem2 13017 iccsupr 13479 supicc 13538 supiccub 13539 supicclub 13540 flval3 13852 fsequb 14013 01sqrexlem3 15280 caubnd2 15393 caubnd 15394 lo1bdd2 15557 lo1bddrp 15558 climcnds 15884 ruclem12 16274 maxprmfct 16743 prmreclem1 16950 prmreclem6 16955 ramz 17059 pgpssslw 19647 gexex 19886 icccmplem2 24859 icccmplem3 24860 reconnlem2 24863 cnllycmp 25002 cncmet 25370 ivthlem2 25501 ivthlem3 25502 cniccbdd 25510 ovolunlem1 25546 ovoliunlem1 25551 ovoliun2 25555 ioombl1lem4 25610 uniioombllem2 25632 uniioombllem6 25637 mbfinf 25714 mbflimsup 25715 itg1climres 25764 itg2i1fseq 25805 itg2i1fseq2 25806 itg2cnlem1 25811 plyeq0lem 26264 ulmbdd 26456 mtestbdd 26463 iblulm 26465 emcllem6 27059 lgambdd 27095 ftalem3 27133 ubthlem2 30900 ubthlem3 30901 htthlem 30946 rge0scvg 33910 esumpcvgval 34059 oddpwdc 34336 mblfinlem3 37646 ismblfin 37648 itg2addnc 37661 ubelsupr 44958 rexabslelem 45368 limsupubuz 45669 liminfreuzlem 45758 dvdivbd 45879 sge0supre 46345 sge0rnbnd 46349 meaiuninc2 46438 hoidmvlelem1 46551 hoidmvlelem4 46554 smfinflem 46773 |
Copyright terms: Public domain | W3C validator |