![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3177 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3612 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 |
This theorem is referenced by: axpre-sup 11166 fimaxre2 12161 supaddc 12183 supadd 12184 supmul1 12185 supmullem2 12187 supmul 12188 rpnnen1lem2 12963 iccsupr 13421 supicc 13480 supiccub 13481 supicclub 13482 flval3 13782 fsequb 13942 01sqrexlem3 15193 caubnd2 15306 caubnd 15307 lo1bdd2 15470 lo1bddrp 15471 climcnds 15799 ruclem12 16186 maxprmfct 16648 prmreclem1 16851 prmreclem6 16856 ramz 16960 pgpssslw 19484 gexex 19723 icccmplem2 24346 icccmplem3 24347 reconnlem2 24350 cnllycmp 24479 cncmet 24846 ivthlem2 24976 ivthlem3 24977 cniccbdd 24985 ovolunlem1 25021 ovoliunlem1 25026 ovoliun2 25030 ioombl1lem4 25085 uniioombllem2 25107 uniioombllem6 25112 mbfinf 25189 mbflimsup 25190 itg1climres 25239 itg2i1fseq 25280 itg2i1fseq2 25281 itg2cnlem1 25286 plyeq0lem 25731 ulmbdd 25917 mtestbdd 25924 iblulm 25926 emcllem6 26512 lgambdd 26548 ftalem3 26586 ubthlem2 30162 ubthlem3 30163 htthlem 30208 rge0scvg 32998 esumpcvgval 33145 oddpwdc 33422 mblfinlem3 36619 ismblfin 36621 itg2addnc 36634 ubelsupr 43792 rexabslelem 44213 limsupubuz 44514 liminfreuzlem 44603 dvdivbd 44724 sge0supre 45190 sge0rnbnd 45194 meaiuninc2 45283 hoidmvlelem1 45396 hoidmvlelem4 45399 smfinflem 45618 |
Copyright terms: Public domain | W3C validator |