![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3184 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3635 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: axpre-sup 11238 fimaxre2 12240 supaddc 12262 supadd 12263 supmul1 12264 supmullem2 12266 supmul 12267 rpnnen1lem2 13042 iccsupr 13502 supicc 13561 supiccub 13562 supicclub 13563 flval3 13866 fsequb 14026 01sqrexlem3 15293 caubnd2 15406 caubnd 15407 lo1bdd2 15570 lo1bddrp 15571 climcnds 15899 ruclem12 16289 maxprmfct 16756 prmreclem1 16963 prmreclem6 16968 ramz 17072 pgpssslw 19656 gexex 19895 icccmplem2 24864 icccmplem3 24865 reconnlem2 24868 cnllycmp 25007 cncmet 25375 ivthlem2 25506 ivthlem3 25507 cniccbdd 25515 ovolunlem1 25551 ovoliunlem1 25556 ovoliun2 25560 ioombl1lem4 25615 uniioombllem2 25637 uniioombllem6 25642 mbfinf 25719 mbflimsup 25720 itg1climres 25769 itg2i1fseq 25810 itg2i1fseq2 25811 itg2cnlem1 25816 plyeq0lem 26269 ulmbdd 26459 mtestbdd 26466 iblulm 26468 emcllem6 27062 lgambdd 27098 ftalem3 27136 ubthlem2 30903 ubthlem3 30904 htthlem 30949 rge0scvg 33895 esumpcvgval 34042 oddpwdc 34319 mblfinlem3 37619 ismblfin 37621 itg2addnc 37634 ubelsupr 44920 rexabslelem 45333 limsupubuz 45634 liminfreuzlem 45723 dvdivbd 45844 sge0supre 46310 sge0rnbnd 46314 meaiuninc2 46403 hoidmvlelem1 46516 hoidmvlelem4 46519 smfinflem 46738 |
Copyright terms: Public domain | W3C validator |