| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3585 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: axpre-sup 11098 fimaxre2 12104 supaddc 12126 supadd 12127 supmul1 12128 supmullem2 12130 supmul 12131 rpnnen1lem2 12912 iccsupr 13379 supicc 13438 supiccub 13439 supicclub 13440 flval3 13753 fsequb 13916 01sqrexlem3 15186 caubnd2 15300 caubnd 15301 lo1bdd2 15466 lo1bddrp 15467 climcnds 15793 ruclem12 16185 maxprmfct 16655 prmreclem1 16863 prmreclem6 16868 ramz 16972 pgpssslw 19528 gexex 19767 icccmplem2 24745 icccmplem3 24746 reconnlem2 24749 cnllycmp 24888 cncmet 25255 ivthlem2 25386 ivthlem3 25387 cniccbdd 25395 ovolunlem1 25431 ovoliunlem1 25436 ovoliun2 25440 ioombl1lem4 25495 uniioombllem2 25517 uniioombllem6 25522 mbfinf 25599 mbflimsup 25600 itg1climres 25648 itg2i1fseq 25689 itg2i1fseq2 25690 itg2cnlem1 25695 plyeq0lem 26148 ulmbdd 26340 mtestbdd 26347 iblulm 26349 emcllem6 26944 lgambdd 26980 ftalem3 27018 ubthlem2 30850 ubthlem3 30851 htthlem 30896 rge0scvg 33932 esumpcvgval 34061 oddpwdc 34338 mblfinlem3 37646 ismblfin 37648 itg2addnc 37661 ubelsupr 45007 rexabslelem 45407 limsupubuz 45704 liminfreuzlem 45793 dvdivbd 45914 sge0supre 46380 sge0rnbnd 46384 meaiuninc2 46473 hoidmvlelem1 46586 hoidmvlelem4 46589 smfinflem 46808 |
| Copyright terms: Public domain | W3C validator |