Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5039 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3126 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3543 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 class class class wbr 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-un 3865 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 |
This theorem is referenced by: axpre-sup 10634 fimaxre2 11628 supaddc 11649 supadd 11650 supmul1 11651 supmullem2 11653 supmul 11654 rpnnen1lem2 12422 iccsupr 12879 supicc 12938 supiccub 12939 supicclub 12940 flval3 13239 fsequb 13397 sqrlem3 14657 caubnd2 14770 caubnd 14771 lo1bdd2 14934 lo1bddrp 14935 climcnds 15259 ruclem12 15647 maxprmfct 16110 prmreclem1 16312 prmreclem6 16317 ramz 16421 pgpssslw 18811 gexex 19046 icccmplem2 23529 icccmplem3 23530 reconnlem2 23533 cnllycmp 23662 cncmet 24027 ivthlem2 24157 ivthlem3 24158 cniccbdd 24166 ovolunlem1 24202 ovoliunlem1 24207 ovoliun2 24211 ioombl1lem4 24266 uniioombllem2 24288 uniioombllem6 24293 mbfinf 24370 mbflimsup 24371 itg1climres 24419 itg2i1fseq 24460 itg2i1fseq2 24461 itg2cnlem1 24466 plyeq0lem 24911 ulmbdd 25097 mtestbdd 25104 iblulm 25106 emcllem6 25690 lgambdd 25726 ftalem3 25764 ubthlem2 28758 ubthlem3 28759 htthlem 28804 rge0scvg 31424 esumpcvgval 31569 oddpwdc 31844 mblfinlem3 35402 ismblfin 35404 itg2addnc 35417 ubelsupr 42050 rexabslelem 42449 limsupubuz 42749 liminfreuzlem 42838 dvdivbd 42959 sge0supre 43422 sge0rnbnd 43426 meaiuninc2 43515 hoidmvlelem1 43628 hoidmvlelem4 43631 smfinflem 43842 |
Copyright terms: Public domain | W3C validator |