| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5093 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3155 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3572 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: axpre-sup 11060 fimaxre2 12067 supaddc 12089 supadd 12090 supmul1 12091 supmullem2 12093 supmul 12094 rpnnen1lem2 12875 iccsupr 13342 supicc 13401 supiccub 13402 supicclub 13403 flval3 13719 fsequb 13882 01sqrexlem3 15151 caubnd2 15265 caubnd 15266 lo1bdd2 15431 lo1bddrp 15432 climcnds 15758 ruclem12 16150 maxprmfct 16620 prmreclem1 16828 prmreclem6 16833 ramz 16937 pgpssslw 19526 gexex 19765 icccmplem2 24739 icccmplem3 24740 reconnlem2 24743 cnllycmp 24882 cncmet 25249 ivthlem2 25380 ivthlem3 25381 cniccbdd 25389 ovolunlem1 25425 ovoliunlem1 25430 ovoliun2 25434 ioombl1lem4 25489 uniioombllem2 25511 uniioombllem6 25516 mbfinf 25593 mbflimsup 25594 itg1climres 25642 itg2i1fseq 25683 itg2i1fseq2 25684 itg2cnlem1 25689 plyeq0lem 26142 ulmbdd 26334 mtestbdd 26341 iblulm 26343 emcllem6 26938 lgambdd 26974 ftalem3 27012 ubthlem2 30851 ubthlem3 30852 htthlem 30897 rge0scvg 33962 esumpcvgval 34091 oddpwdc 34367 mblfinlem3 37698 ismblfin 37700 itg2addnc 37713 ubelsupr 45116 rexabslelem 45515 limsupubuz 45810 liminfreuzlem 45899 dvdivbd 46020 sge0supre 46486 sge0rnbnd 46490 meaiuninc2 46579 hoidmvlelem1 46692 hoidmvlelem4 46695 smfinflem 46914 |
| Copyright terms: Public domain | W3C validator |