| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
| 3 | 2 | rspcev 3585 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: axpre-sup 11100 fimaxre2 12106 supaddc 12128 supadd 12129 supmul1 12130 supmullem2 12132 supmul 12133 rpnnen1lem2 12914 iccsupr 13381 supicc 13440 supiccub 13441 supicclub 13442 flval3 13755 fsequb 13918 01sqrexlem3 15187 caubnd2 15301 caubnd 15302 lo1bdd2 15467 lo1bddrp 15468 climcnds 15794 ruclem12 16186 maxprmfct 16656 prmreclem1 16864 prmreclem6 16869 ramz 16973 pgpssslw 19529 gexex 19768 icccmplem2 24746 icccmplem3 24747 reconnlem2 24750 cnllycmp 24889 cncmet 25256 ivthlem2 25387 ivthlem3 25388 cniccbdd 25396 ovolunlem1 25432 ovoliunlem1 25437 ovoliun2 25441 ioombl1lem4 25496 uniioombllem2 25518 uniioombllem6 25523 mbfinf 25600 mbflimsup 25601 itg1climres 25649 itg2i1fseq 25690 itg2i1fseq2 25691 itg2cnlem1 25696 plyeq0lem 26149 ulmbdd 26341 mtestbdd 26348 iblulm 26350 emcllem6 26945 lgambdd 26981 ftalem3 27019 ubthlem2 30851 ubthlem3 30852 htthlem 30897 rge0scvg 33933 esumpcvgval 34062 oddpwdc 34339 mblfinlem3 37647 ismblfin 37649 itg2addnc 37662 ubelsupr 45008 rexabslelem 45408 limsupubuz 45705 liminfreuzlem 45794 dvdivbd 45915 sge0supre 46381 sge0rnbnd 46385 meaiuninc2 46474 hoidmvlelem1 46587 hoidmvlelem4 46590 smfinflem 46809 |
| Copyright terms: Public domain | W3C validator |