![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3178 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3613 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 |
This theorem is referenced by: axpre-sup 11164 fimaxre2 12159 supaddc 12181 supadd 12182 supmul1 12183 supmullem2 12185 supmul 12186 rpnnen1lem2 12961 iccsupr 13419 supicc 13478 supiccub 13479 supicclub 13480 flval3 13780 fsequb 13940 01sqrexlem3 15191 caubnd2 15304 caubnd 15305 lo1bdd2 15468 lo1bddrp 15469 climcnds 15797 ruclem12 16184 maxprmfct 16646 prmreclem1 16849 prmreclem6 16854 ramz 16958 pgpssslw 19482 gexex 19721 icccmplem2 24339 icccmplem3 24340 reconnlem2 24343 cnllycmp 24472 cncmet 24839 ivthlem2 24969 ivthlem3 24970 cniccbdd 24978 ovolunlem1 25014 ovoliunlem1 25019 ovoliun2 25023 ioombl1lem4 25078 uniioombllem2 25100 uniioombllem6 25105 mbfinf 25182 mbflimsup 25183 itg1climres 25232 itg2i1fseq 25273 itg2i1fseq2 25274 itg2cnlem1 25279 plyeq0lem 25724 ulmbdd 25910 mtestbdd 25917 iblulm 25919 emcllem6 26505 lgambdd 26541 ftalem3 26579 ubthlem2 30124 ubthlem3 30125 htthlem 30170 rge0scvg 32929 esumpcvgval 33076 oddpwdc 33353 mblfinlem3 36527 ismblfin 36529 itg2addnc 36542 ubelsupr 43704 rexabslelem 44128 limsupubuz 44429 liminfreuzlem 44518 dvdivbd 44639 sge0supre 45105 sge0rnbnd 45109 meaiuninc2 45198 hoidmvlelem1 45311 hoidmvlelem4 45314 smfinflem 45533 |
Copyright terms: Public domain | W3C validator |