![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovord2d | Structured version Visualization version GIF version |
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovordg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
caovordd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovordd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovordd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovord2d.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
Ref | Expression |
---|---|
caovord2d | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovordg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
2 | caovordd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovordd.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | caovordd.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
5 | 1, 2, 3, 4 | caovordd 7636 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
6 | caovord2d.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
7 | 6, 4, 2 | caovcomd 7624 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐴𝐹𝐶)) |
8 | 6, 4, 3 | caovcomd 7624 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐵) = (𝐵𝐹𝐶)) |
9 | 7, 8 | breq12d 5165 | . 2 ⊢ (𝜑 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
10 | 5, 9 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 (class class class)co 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-ov 7429 |
This theorem is referenced by: caovord3d 7638 |
Copyright terms: Public domain | W3C validator |