![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbveud | Structured version Visualization version GIF version |
Description: Deduction used to change bound variables in an existential uniqueness quantifier, using implicit substitution. (Contributed by ML, 27-Mar-2021.) |
Ref | Expression |
---|---|
cbveud.1 | ⊢ Ⅎ𝑥𝜑 |
cbveud.2 | ⊢ Ⅎ𝑦𝜑 |
cbveud.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbveud.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbveud.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbveud | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveud.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | cbveud.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | cbveud.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | nfvd 1893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦 𝑥 = 𝑧) | |
5 | 3, 4 | nfbid 1884 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦(𝜓 ↔ 𝑥 = 𝑧)) |
6 | cbveud.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
7 | nfvd 1893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
8 | 6, 7 | nfbid 1884 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝜒 ↔ 𝑦 = 𝑧)) |
9 | cbveud.5 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
10 | simpr 485 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ (𝜓 ↔ 𝜒)) → (𝜓 ↔ 𝜒)) | |
11 | equequ1 2009 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
12 | 11 | adantr 481 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ (𝜓 ↔ 𝜒)) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
13 | 10, 12 | bibi12d 347 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ (𝜓 ↔ 𝜒)) → ((𝜓 ↔ 𝑥 = 𝑧) ↔ (𝜒 ↔ 𝑦 = 𝑧))) |
14 | 13 | ex 413 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜓 ↔ 𝜒) → ((𝜓 ↔ 𝑥 = 𝑧) ↔ (𝜒 ↔ 𝑦 = 𝑧)))) |
15 | 9, 14 | sylcom 30 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → ((𝜓 ↔ 𝑥 = 𝑧) ↔ (𝜒 ↔ 𝑦 = 𝑧)))) |
16 | 1, 2, 5, 8, 15 | cbv2 2379 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ↔ ∀𝑦(𝜒 ↔ 𝑦 = 𝑧))) |
17 | 16 | exbidv 1899 | . 2 ⊢ (𝜑 → (∃𝑧∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜒 ↔ 𝑦 = 𝑧))) |
18 | eu6 2617 | . 2 ⊢ (∃!𝑥𝜓 ↔ ∃𝑧∀𝑥(𝜓 ↔ 𝑥 = 𝑧)) | |
19 | eu6 2617 | . 2 ⊢ (∃!𝑦𝜒 ↔ ∃𝑧∀𝑦(𝜒 ↔ 𝑦 = 𝑧)) | |
20 | 17, 18, 19 | 3bitr4g 315 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 = wceq 1522 ∃wex 1761 Ⅎwnf 1765 ∃!weu 2611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-nf 1766 df-mo 2576 df-eu 2612 |
This theorem is referenced by: cbvreud 34185 |
Copyright terms: Public domain | W3C validator |