Step | Hyp | Ref
| Expression |
1 | | cbveud.1 |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | cbveud.2 |
. . . 4
⊢
Ⅎ𝑦𝜑 |
3 | | cbveud.3 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑦𝜓) |
4 | | nfvd 1919 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑦 𝑥 = 𝑧) |
5 | 3, 4 | nfbid 1906 |
. . . 4
⊢ (𝜑 → Ⅎ𝑦(𝜓 ↔ 𝑥 = 𝑧)) |
6 | | cbveud.4 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑥𝜒) |
7 | | nfvd 1919 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) |
8 | 6, 7 | nfbid 1906 |
. . . 4
⊢ (𝜑 → Ⅎ𝑥(𝜒 ↔ 𝑦 = 𝑧)) |
9 | | cbveud.5 |
. . . . 5
⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
10 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (𝜓 ↔ 𝜒)) → (𝜓 ↔ 𝜒)) |
11 | | equequ1 2029 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (𝜓 ↔ 𝜒)) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
13 | 10, 12 | bibi12d 345 |
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ (𝜓 ↔ 𝜒)) → ((𝜓 ↔ 𝑥 = 𝑧) ↔ (𝜒 ↔ 𝑦 = 𝑧))) |
14 | 13 | ex 412 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝜓 ↔ 𝜒) → ((𝜓 ↔ 𝑥 = 𝑧) ↔ (𝜒 ↔ 𝑦 = 𝑧)))) |
15 | 9, 14 | sylcom 30 |
. . . 4
⊢ (𝜑 → (𝑥 = 𝑦 → ((𝜓 ↔ 𝑥 = 𝑧) ↔ (𝜒 ↔ 𝑦 = 𝑧)))) |
16 | 1, 2, 5, 8, 15 | cbv2w 2336 |
. . 3
⊢ (𝜑 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ↔ ∀𝑦(𝜒 ↔ 𝑦 = 𝑧))) |
17 | 16 | exbidv 1925 |
. 2
⊢ (𝜑 → (∃𝑧∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜒 ↔ 𝑦 = 𝑧))) |
18 | | eu6 2574 |
. 2
⊢
(∃!𝑥𝜓 ↔ ∃𝑧∀𝑥(𝜓 ↔ 𝑥 = 𝑧)) |
19 | | eu6 2574 |
. 2
⊢
(∃!𝑦𝜒 ↔ ∃𝑧∀𝑦(𝜒 ↔ 𝑦 = 𝑧)) |
20 | 17, 18, 19 | 3bitr4g 313 |
1
⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒)) |