Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviotavwOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cbviotavw 6384 as of 30-Sep-2024. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbviotavwOLD.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotavwOLD | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotavwOLD.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | cbviotaw 6383 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 df-uni 4837 df-iota 6376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |