| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑧(𝜑 ↔ 𝑥 = 𝑤) |
| 2 | | nfs1v 2156 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 3 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝑤 |
| 4 | 2, 3 | nfbi 1903 |
. . . . . 6
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) |
| 5 | | sbequ12 2251 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 6 | | equequ1 2024 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑧 = 𝑤)) |
| 7 | 5, 6 | bibi12d 345 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤))) |
| 8 | 1, 4, 7 | cbvalv1 2343 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤)) |
| 9 | | cbviotaw.2 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
| 10 | 9 | nfsbv 2330 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 11 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 |
| 12 | 10, 11 | nfbi 1903 |
. . . . . 6
⊢
Ⅎ𝑦([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) |
| 13 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑧(𝜓 ↔ 𝑦 = 𝑤) |
| 14 | | cbviotaw.3 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜓 |
| 15 | | cbviotaw.1 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 16 | 14, 15 | sbhypf 3544 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
| 17 | | equequ1 2024 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑤 ↔ 𝑦 = 𝑤)) |
| 18 | 16, 17 | bibi12d 345 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ (𝜓 ↔ 𝑦 = 𝑤))) |
| 19 | 12, 13, 18 | cbvalv1 2343 |
. . . . 5
⊢
(∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) |
| 20 | 8, 19 | bitri 275 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) |
| 21 | 20 | abbii 2809 |
. . 3
⊢ {𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
| 22 | 21 | unieqi 4919 |
. 2
⊢ ∪ {𝑤
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = ∪ {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
| 23 | | dfiota2 6515 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} |
| 24 | | dfiota2 6515 |
. 2
⊢
(℩𝑦𝜓) = ∪
{𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
| 25 | 22, 23, 24 | 3eqtr4i 2775 |
1
⊢
(℩𝑥𝜑) = (℩𝑦𝜓) |