Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑧(𝜑 ↔ 𝑥 = 𝑤) |
2 | | nfs1v 2155 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
3 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝑤 |
4 | 2, 3 | nfbi 1907 |
. . . . . 6
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) |
5 | | sbequ12 2247 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
6 | | equequ1 2029 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑧 = 𝑤)) |
7 | 5, 6 | bibi12d 345 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤))) |
8 | 1, 4, 7 | cbvalv1 2340 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤)) |
9 | | cbviotaw.2 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
10 | 9 | nfsbv 2328 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
11 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 |
12 | 10, 11 | nfbi 1907 |
. . . . . 6
⊢
Ⅎ𝑦([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) |
13 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑧(𝜓 ↔ 𝑦 = 𝑤) |
14 | | cbviotaw.3 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜓 |
15 | | cbviotaw.1 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
16 | 14, 15 | sbhypf 3481 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
17 | | equequ1 2029 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑤 ↔ 𝑦 = 𝑤)) |
18 | 16, 17 | bibi12d 345 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ (𝜓 ↔ 𝑦 = 𝑤))) |
19 | 12, 13, 18 | cbvalv1 2340 |
. . . . 5
⊢
(∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) |
20 | 8, 19 | bitri 274 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) |
21 | 20 | abbii 2809 |
. . 3
⊢ {𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
22 | 21 | unieqi 4849 |
. 2
⊢ ∪ {𝑤
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = ∪ {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
23 | | dfiota2 6377 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} |
24 | | dfiota2 6377 |
. 2
⊢
(℩𝑦𝜓) = ∪
{𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
25 | 22, 23, 24 | 3eqtr4i 2776 |
1
⊢
(℩𝑥𝜑) = (℩𝑦𝜓) |