MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotaw Structured version   Visualization version   GIF version

Theorem cbviotaw 6474
Description: Change bound variables in a description binder. Version of cbviota 6476 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Andrew Salmon, 1-Aug-2011.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
cbviotaw.1 (𝑥 = 𝑦 → (𝜑𝜓))
cbviotaw.2 𝑦𝜑
cbviotaw.3 𝑥𝜓
Assertion
Ref Expression
cbviotaw (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbviotaw
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑧(𝜑𝑥 = 𝑤)
2 nfs1v 2157 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
3 nfv 1914 . . . . . . 7 𝑥 𝑧 = 𝑤
42, 3nfbi 1903 . . . . . 6 𝑥([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
5 sbequ12 2252 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
6 equequ1 2025 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
75, 6bibi12d 345 . . . . . 6 (𝑥 = 𝑧 → ((𝜑𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑𝑧 = 𝑤)))
81, 4, 7cbvalv1 2339 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤))
9 cbviotaw.2 . . . . . . . 8 𝑦𝜑
109nfsbv 2329 . . . . . . 7 𝑦[𝑧 / 𝑥]𝜑
11 nfv 1914 . . . . . . 7 𝑦 𝑧 = 𝑤
1210, 11nfbi 1903 . . . . . 6 𝑦([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
13 nfv 1914 . . . . . 6 𝑧(𝜓𝑦 = 𝑤)
14 cbviotaw.3 . . . . . . . 8 𝑥𝜓
15 cbviotaw.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
1614, 15sbhypf 3513 . . . . . . 7 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
17 equequ1 2025 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝑤𝑦 = 𝑤))
1816, 17bibi12d 345 . . . . . 6 (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ (𝜓𝑦 = 𝑤)))
1912, 13, 18cbvalv1 2339 . . . . 5 (∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
208, 19bitri 275 . . . 4 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
2120abbii 2797 . . 3 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2221unieqi 4886 . 2 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
23 dfiota2 6468 . 2 (℩𝑥𝜑) = {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)}
24 dfiota2 6468 . 2 (℩𝑦𝜓) = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2522, 23, 243eqtr4i 2763 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wnf 1783  [wsb 2065  {cab 2708   cuni 4874  cio 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-sn 4593  df-uni 4875  df-iota 6467
This theorem is referenced by:  fvopab5  7004  cbvriotaw  7356
  Copyright terms: Public domain W3C validator