| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑧(𝜑 ↔ 𝑥 = 𝑤) | 
| 2 |  | nfs1v 2155 | . . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 | 
| 3 |  | nfv 1913 | . . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝑤 | 
| 4 | 2, 3 | nfbi 1902 | . . . . . 6
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) | 
| 5 |  | sbequ12 2250 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 6 |  | equequ1 2023 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑧 = 𝑤)) | 
| 7 | 5, 6 | bibi12d 345 | . . . . . 6
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤))) | 
| 8 | 1, 4, 7 | cbvalv1 2342 | . . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤)) | 
| 9 |  | cbviota.2 | . . . . . . . 8
⊢
Ⅎ𝑦𝜑 | 
| 10 | 9 | nfsb 2527 | . . . . . . 7
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 | 
| 11 |  | nfv 1913 | . . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 | 
| 12 | 10, 11 | nfbi 1902 | . . . . . 6
⊢
Ⅎ𝑦([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) | 
| 13 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑧(𝜓 ↔ 𝑦 = 𝑤) | 
| 14 |  | sbequ 2082 | . . . . . . . 8
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 15 |  | cbviota.3 | . . . . . . . . 9
⊢
Ⅎ𝑥𝜓 | 
| 16 |  | cbviota.1 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 17 | 15, 16 | sbie 2506 | . . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| 18 | 14, 17 | bitrdi 287 | . . . . . . 7
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) | 
| 19 |  | equequ1 2023 | . . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑤 ↔ 𝑦 = 𝑤)) | 
| 20 | 18, 19 | bibi12d 345 | . . . . . 6
⊢ (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ (𝜓 ↔ 𝑦 = 𝑤))) | 
| 21 | 12, 13, 20 | cbvalv1 2342 | . . . . 5
⊢
(∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) | 
| 22 | 8, 21 | bitri 275 | . . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) | 
| 23 | 22 | abbii 2808 | . . 3
⊢ {𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} | 
| 24 | 23 | unieqi 4918 | . 2
⊢ ∪ {𝑤
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = ∪ {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} | 
| 25 |  | dfiota2 6514 | . 2
⊢
(℩𝑥𝜑) = ∪
{𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} | 
| 26 |  | dfiota2 6514 | . 2
⊢
(℩𝑦𝜓) = ∪
{𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} | 
| 27 | 24, 25, 26 | 3eqtr4i 2774 | 1
⊢
(℩𝑥𝜑) = (℩𝑦𝜓) |