MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviota Structured version   Visualization version   GIF version

Theorem cbviota 6386
Description: Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbviotaw 6383 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbviota.1 (𝑥 = 𝑦 → (𝜑𝜓))
cbviota.2 𝑦𝜑
cbviota.3 𝑥𝜓
Assertion
Ref Expression
cbviota (℩𝑥𝜑) = (℩𝑦𝜓)

Proof of Theorem cbviota
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑧(𝜑𝑥 = 𝑤)
2 nfs1v 2155 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
3 nfv 1918 . . . . . . 7 𝑥 𝑧 = 𝑤
42, 3nfbi 1907 . . . . . 6 𝑥([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
5 sbequ12 2247 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
6 equequ1 2029 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
75, 6bibi12d 345 . . . . . 6 (𝑥 = 𝑧 → ((𝜑𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑𝑧 = 𝑤)))
81, 4, 7cbvalv1 2340 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤))
9 cbviota.2 . . . . . . . 8 𝑦𝜑
109nfsb 2527 . . . . . . 7 𝑦[𝑧 / 𝑥]𝜑
11 nfv 1918 . . . . . . 7 𝑦 𝑧 = 𝑤
1210, 11nfbi 1907 . . . . . 6 𝑦([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
13 nfv 1918 . . . . . 6 𝑧(𝜓𝑦 = 𝑤)
14 sbequ 2087 . . . . . . . 8 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 cbviota.3 . . . . . . . . 9 𝑥𝜓
16 cbviota.1 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16sbie 2506 . . . . . . . 8 ([𝑦 / 𝑥]𝜑𝜓)
1814, 17bitrdi 286 . . . . . . 7 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
19 equequ1 2029 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝑤𝑦 = 𝑤))
2018, 19bibi12d 345 . . . . . 6 (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ (𝜓𝑦 = 𝑤)))
2112, 13, 20cbvalv1 2340 . . . . 5 (∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
228, 21bitri 274 . . . 4 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
2322abbii 2809 . . 3 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2423unieqi 4849 . 2 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
25 dfiota2 6377 . 2 (℩𝑥𝜑) = {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)}
26 dfiota2 6377 . 2 (℩𝑦𝜓) = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2724, 25, 263eqtr4i 2776 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  [wsb 2068  {cab 2715   cuni 4836  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376
This theorem is referenced by:  cbviotav  6387  cbvriota  7226
  Copyright terms: Public domain W3C validator